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Abstract 

Over the recent decades researchers in academia and central banks have 
developed early warning systems (EWS) designed to warn policy makers of 
potential future economic and financial crises. These EWS are based on 
diverse approaches and empirical models. In this paper we compare the 
performance of nine distinct models for predicting banking crises resulting 
from the work of the Macroprudential Research Network (MaRs) initiated by 
the European System of Central Banks. In order to ensure comparability, all 
models use the same database of crises created by MaRs and comparable sets 
of potential early warning indicators. We evaluate the models’ relative 
usefulness by comparing the ratios of false alarms and missed crises and 
discuss implications for pratical use and future research. We find that 
multivariate models, in their many appearances, have great potential added 
value over simple signalling models. One of the main policy 
recommendations coming from this exercise is that policy makers can 
benefit from taking a broad methodological approach when they develop 
models to set macro-prudential instruments.  

 

I. Introduction 

The global financial crisis has led researchers and policy makers around the world to put considerable 
effort into understanding and predicting systemic banking crises. In doing so, the empirical literature 
concerned with predicting banking crises has been focusing on developing early warning systems 
(EWS) which seek to predict future crises.    

The aim of this paper is to elaborate on these advances in the field of EWS in a rather unique exercise. 
Specifically, we compare the performance of nine distinct models resulting from the work of the 
Macroprudential Research Network (MaRs).1 All models use the same database of crises created by 

                                                            
1 In the spring of 2010 the General Council of the European Central Bank (ECB) approved the establishment of the Macroprudential 
Research Network (MaRs) with the objective of developing core conceptual frameworks, models and tools that would provide research 
support in order to improve macro-prudential supervision in the European Union (EU). MaRs was set up for an initial period of two years, 
during which time it has followed three work streams. First, work stream 1 incorporates macro-financial models linking financial stability 
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MaRs and comparable sets of potential early warning indicators, so that we get a high degree of 
comparability. We evaluate the models’ relative usefulness by comparing the ratios of false alarms and 
missed crises and discuss implications for pratical use and future research. Most models depart from 
traditional discrete choice (logit/probit) models, introducing dynamics and accounting for 
nonlinearities (binary regression trees) in these models as well as addressing uncertainty  in the 
selection of individual early warning indicators (by means of Bayesian econometric techniques)  
Moreover, a potential of cross country heterogeneity is taken into accout (random coefficient models). 
Besides comparing the relative performance of these models, we discuss also relative advantages of 
different models in terms of economic intuition. 

We find that  despite the great diversity of approaches, one common result of these multivariate 
approaches is that they possess great potential to provide very useful early warning results, while 
offering considerable improvements over univariate signalling variables in terms of crisis prediction 
performance. Among the many results, we find evidence supporting the importance of accounting for 
private sector credit growth. The paper is organised as follows: Section II presents a concise overview 
of the related literature. Section III discusses the framework of the exercise and presents a set of 
common rules established ex-ante for all the approaches to follow to ensure meaningful comparability 
of model performance. Section IV elaborates on individual methodologies. Section V discusses the 
common left-hand side variable, while Section VI offers a structured comparison of the right-hand 
side variables, along with a summary of country coverage, time periods used for estimations, leads of 
early warning indicators (EWI) and model forecast horizons for each approach. Section VII compares 
the presented methodologies while it also highlights the specific features of each approach that 
contribute to their estimation success. Section VIII pinpoints in a concise manner the strengths and 
weaknesses of each approach while section IX lays ground for the future research to be yet done in the 
field. 
 

II. Related literature 
 
The early warning literature dates back to the late 1970s, when several currency crises generated 
interest in leading indicators (Bilson, 1979) and theoretical models (Krugman, 1979) explaining such 
crises. Nevertheless, only in the 1990s a wide-ranging methodological debate started, including studies 
on banking and balance-of-payments problems (Kaminsky and Reinhart, 1996) and currency crashes 
(Frankel and Rose, 1996). 

Starting with the identification of single indicators, variable selection in most papers has usually 
followed the early work on signalling models from, inter alia, Kaminsky et al. (1998). The univariate 
signalling approach essentially maps the historical time series of a single indicator on past crises and 
extracts a threshold value above which crises are likely to happen. This univariate approach is 
transparent and straightforward to apply, which makes it attractive for policy makers. Yet, it contains a 
risk of underestimating the probability of a crisis if several other, potentially important, factors are 
close to (but below) their individual threshold values (Borio and Lowe 2002). More recent multi-
variable early warning models have reduced this risk by estimating the probability of a future event 
(financial instability or a crisis) from a set of several potential early warning indicators (Frankel and 
Saravelos 2010 and Rose and Spiegel 2009). For both the univariate and the multivariate approaches it 
                                                                                                                                                                                          
and the performance of the economy. Second, work stream 2 focuses on early warning systems and systemic risk indicators while work 
stream 3 assesses contagion risks. The review of early warning methods conducted in this paper falls into the second work stream. 
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holds that in the case of a discrete left hand side variable, each early warning indicator or model is 
evaluated by minimising either the signal-to-noise ratio (Kaminsky 1999) or a policymaker’s loss 
function (Demirgüc-Kunt and Detragiache 1999 and Bussière and Fratzscher 2006). In the case of the 
discrete choice approach (multinomial logit) and the continuous left-hand side variable approach, 
models have been estimated retaining significant indicators. Various papers also assessed the 
importance of banking sector characteristics for financial stability (Jeitschko and Jeung 2005, Cihak et 
al. 2009, Fahlenbrach et al. 2011). 

More recent research has strived to improve early warning models by developing new techniques and 
employing more extensive datasets. Specifically, it has offered policy makers the explicit choice to 
pre-select their preferences regarding missed crises and false alarms and has subsequently evaluated 
indicators according to their usefulness given these preferences (Alessi and Detken 2011). In addition 
to traditional binary logit or probit models (Berg and Pattillo, 1998), the literature has been extended 
with multinomial models (Bussiere and Fratzscher, 2006), which generalise the discrete choice from 
two (yes/no) to more states, such as crisis, post-crisis, and tranquil periods. Departing from discrete 
choice models, continuous crisis indicators have been proposed (Rose and Spiegel, 2009, Frankel and 
Saravelos, 2010) that allow the EWM to explain the scale of real costs without the need to decide if it 
is sufficiently high to produce a ‘yes’ value. Markov switching models (Peria, 2002, Abiad, 2003) 
have also found their use in this area. Moreover, the literature improved the toolkits with methods such 
as non-parametric clustering methods like the binary recursive tree method (Barrel et al. 2009). A 
recent extensive literature review of both old and new publications is presented for example by Kauko 
(2014) and Mayes and Stremmel (2014).  

Concerning computational methodology, Gaytán and Johnson (2002) distinguish qualitative 
approaches, signal extraction methods, dependent regression analysis, and other EWM approaches. As 
for qualitative models, they predict financial crises by exploring logical dependencies between risk 
factors and crises. In many cases, these links are simulated for different scenarios. For instance, the 
Bank of England uses risk transmission maps and feedback techniques to analyze financial crises 
(Bank of England, 2008; Aikman et al., 2009). Another such approach applies network theory to links 
in financial markets. For example, Elsinger, Lehar, and Summer (2006) model domino effects between 
large UK banks, and run simulations on the basis of a network of linkages between banks.  

Moreover, statistical approaches are primarily data-focused and concentrate on regression models or 
on leading indicator and signal-extraction models. Kaminsky, Lizondo, and Reinhart (1998), and 
Kaminsky and Reinhart (1999) first apply this technique to financial crises by signalling a potential 
crisis when indicators exceed a previously defined threshold. Demirgüç-Kunt and Detragiache (2005) 
compare leading-indicator and regression models, concluding that the logit regression model is more 
suitable. However, Davis and Karim (2008) find that both models are useful, the signal model being 
better at predicting country-specific crises and the regression model more suitable for detecting global 
stress. Other methodological improvements offer policy makers an explicit choice to preselect their 
preferences regarding missed crises and false alarms (Alessi and Detken 2011). 

As for less traditional approaches, tools based on artificial intelligence may provide valuable 
assistance in the complex and dynamic environment of today‘s financial systems. Lin et al. (2006) use 
a neuro-fuzzy approach to identify the drivers of currency crises and find that it improves the crisis 
prediction. A neural network is especially useful in detecting the main drivers of risk and their relative 
importance. On the other hand, input data must be chosen by the user, and the way risk patterns in the 
model are detected remains opaque. These drawbacks thus impede the use of neuro-fuzzy models for 
those wishing to get a more comprehensive picture of the crisis mechanism. Manasse and Roubini 
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(2009) pioneered the use of classification and regression trees for predicting financial crises. Alessi 
and Detken (2014) apply the “Random Forest”, a popular machine learning method based on decision 
trees, to the issue of identifying excessive credit and the associated build-up of systemic risk in the 
financial system. The “Random Forest” proves to be an extremely accurate predictor and a solid basis 
for the selection of the relevant indicators.  

The latest works propose EWMs that consist of several components. First, they specify which costly 
events they intend to warn against. They explicitly distinguish (i) between diverse types of crises, (ii) 
between crisis onsets and occurrence, (iii) between crisis onset/current and crisis incidence in terms of 
real costs. Second, they select which countries should be incorporated into the EWMs and then 
identify which indicators could potentially provide a useful early warning about these costly events. 
By shifting the focus from emerging to developed countries, researchers contributed to working with 
arguably more homogeneous samples of countries. Third, they define time lags for these leading 
indicators in order to give policy makers some time to respond, allowing also for the fact that different 
indicators can provide useful information on different horizons. Fourth,  they apply an empirical 
methodology that allows deciding which potential leading indicators exhibit sufficient predictive 
power and which shall be discarded.   
 

III. Comparing EWS in a Horse race  

Although the early warning literature has been subject to substantial methodological developments 
over the last decade, a robust comparison of different empirical frameworks has not been carried out 
so far. Indeed, different EW studies employ different frameworks and report results that are arguably 
conditioned on the selected framework. The purpose of this paper is to shed some light on relative 
merits of different empirical frameworks by means of a joint exercise (a so-called horse race). To 
make the performance of differing approaches to building early warning models (in our case for 
systemic banking crises) comparable, a set of ground rules needed to be established for the approaches 
to adhere to. This section lays out the specific conditions for all early warning models in this paper to 
follow. 

First, the same dataset for all the authors was provided to draw on, even though everyone was free to 
rescale or generate different computations based on these data as long as these are reported. The 
constraint was put on trend and filter calculations as these were allowed only if they would exploit 
(quasi) real-time data (i.e. data that was available up to a particular moment in time) to ensure usability 
to policy makers. In line with this limitation, only one-sided (backward-looking) Hodrick-Prescott 
filters were allowed, or when a two-sided filter is used, recursive model forecasts should be employed.  

Second, the left-hand-side variable, which defines banking crises and the related pre-banking crises 
periods, in all the EWMs was based on  the banking crisis database that had been previously collected 
by the Czech National Bank and cross-checked by the heads of research of the ESCB within the MaRs 
network (Babecký et al. 2012) (see details in section IV).  

Third, the contributors were asked to evaluate their models’ performance for a homogeneous time 
window, specifically of 20 to 4 quarters before a banking crisis as well as for two sub-periods: the 
“early period” (20-12 quarters before the crisis), and the “late period” (12-4 quarters before the crisis). 
In other words, the models had to predict a crisis well in advance so as to ensure their robustness over 
time, which is key to make the models useful for policymakers who 1) require enough time to identify 
potential vulnerabilities which might need policy action and 2) need to give sufficient time to banks in 
case such actions require banks to build up capital (which applies to, for example, the counter-cyclical 
capital buffer).  
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Fourth, the right-hand-side variables used in the models needed to be either extracted from the 
provided dataset or from other publicly available sources. To increase viability of the forecast 
exercise, the variables selected into models needed to account for the data availability, such as 
publication lags for national account data. Financial market prices could be used contemporaneously.   

Fifth, given the EU-wide focus of the exercise, the authors were asked to incorporate as many EU 
countries as possible and to provide out-of-sample predictions to accompany the reporting of in-
sample model performance. In particular, models should demonstrate the quality of their out-of-
sample performance for crisis episodes that precede the current global financial crisis (2007- ), e.g. the 
Danish/Finnish/Swedish crises in the late 1980s/early 1990s. The respective crisis episode used for 
this purpose should thus have been excluded from the estimation.  

Finally,  all participants were asked to evaluate the in-sample fit of each horizon applying the so-called 
‘signalling approach’ which has originally been developed by Kaminsky et al. (1998) and extended by 
Demirgüç-Kunt and Detragiache (2000), Alessi and Detken (2011) and Lo Duca and Peltonen (2013). 
In this framework, an indicator issues a warning signal whenever its value in a particular period (in 
this case one of the three time periods discussed above) exceeds a threshold which is defined as a 
percentile of the country-specific distribution of predicted probabilities. For example, a multivariate 
probability model (such as the multivariate logit) issues a warning whenever the predicted probability 
from this model exceeds a threshold. The predictive abilities of the different models can then be 
evaluated by comparing the signals issued by them in relation to the actual crisis observations. Each 
observation can be allocated to one of the quadrants in the contingency matrix depicted below in 
Figure 1: A signal by a specific indicator can either be followed by a banking crisis in a given horizon 
or not, i.e., it can be a true positive (TP) or false positive (FP). Similarly, a period where no signal was 
issued can either be followed by a banking crisis or not, i.e., a false negative (FN) or a true negative 
(TN), respectively. 

Figure 1: Contingency matrix 

 
Note: This figure shows the relationship between model prediction and actual outcomes. Observations are classified into those where the 
indicator issues a warning that is indeed followed by a banking crisis (TP), those where the indicator issues a warning that is not followed by 
a crisis (FP), those where the indicator issues no warning and there is no crises (TN), and those where the indicator issues no warning 
although there is a crisis coming (FN). 

 

In order to obtain the optimal threshold, it is key that the policy maker’s preference vis-à-vis so-called 
type-I (T1) errors (missing a crisis by not issuing a warning although a crisis is approaching within the 
pre-set time horizon) and type-II (T2) errors (i.e. issuing a false alarm) are taken into account. This can 
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be done by using a loss function which is minimised depending on the frequency of the two error types 
and on the policy maker’s preference for either type. The loss of a policy maker consists of T1 and T2, 
weighted according to her relative preferences (P) between missing crises (µ) and giving false alarms 
(1 − µ), which leads to the following loss function: L(µ) = µT1P1 + (1 − µ)T2P2. Using the loss 
function L(µ), the absolute usefulness (U) of a model  can be defined in the following way: U = 
min(µP1, (1 − µ)P2) − L(µ), which computes the extent to which a model performs better than a coin 
toss (having no model). For the horse race, participants were asked to compute both Type I and Type 
II errors of their models.   

In addition to assessing the absolute usefulness of a model, participants were also asked to report the 
Area under the Receiver Operating Characteristics curve (AUROC) as this is also a viable measure for 
comparing early warning model performance. The AUROC measures the probability that a randomly 
chosen distress event is ranked higher than a tranquil period. A perfect ranking has an AUROC equal 
to 1, whereas a coin toss has an expected AUROC of 0.5. 

 
IV. Methodologies 

This section presents the individual approaches to early warning model construction and highlights 
their unique features. The contributions are listed by their authors in order of their increasing 
dissimilarity with traditional approaches.   

Baltussen et al. build a discrete probability (probit) model for crisis prediction. The unique feature of 
their approach is the inclusion of an interdependency index. Whereas other approaches proxy country 
interdependency only indirectly via international variables, this exogenous spatial lag captures country 
interdependency explicitly by simulating financial conditions in partner countries. Accounting for this 
is roughly analogous to the idea behind international application of the counter-cyclical capital buffer 
(CCB) (BCBS, 2010). Cross-border financial exposures are approximated by the bilateral weights in 
the BIS NEER index. The model draws inspiration from approaches used to research the spatial 
dependency of business cycles (Kakamu and Wago, 2010) and contagion of currency crises (Novo, 
2003; Eichengreen, Rose and Wyplosz, 1996). Although probit and logit models lead to fairly similar 
results, a probit is chosen to coincide with more sophisticated spatial econometric research. In the 
latter the logistic distribution results in intractable multivariate specifications (Anselin, 2002).  The 
two-step approach can be formalized as: 

ܲሺݕଵ,௜,௧ሻ ൌ ሺܽߔ ൅ ଵߚ
ᇱݔଵ.௜,௧ ൅ ଵ,௜ݑ ൅  ௜,௧ሻ    (1)ߝ

 

ܲሺݕଶ,௜,௧ሻ ൌ ሺܽߔ ൅ ᇱߛ ௜ܹ,௝
ᇱ
௜
തଵ,௝,௧ݕ ൅ ଶߚ

ᇱݔଶ.௜,௧ ൅ ଶ,௜ݑ	 ൅  ଶ,௜,௧ሻ   (2)ߝ

where ݔ௜,௧ is a vector of the exogenous variables, ߚ is a vector of the coefficients and ݑ௜ is the country-

specific random element. The reasoning behind the random effects model is that the (endogenous) 
spatial lags would amplify selection bias of a fixed effects model. Equation (1) includes important 
non-EU partners used to construct the exogenous interdepency index. The fitted values are used to 
construct the interdependency index, including a mechanical predictor (which takes on a value of 1 a 
fixed number of quarters after a crisis has materialized) to adjust for the post-crisis bias. These 
variables are used in equation (2), where  ݕതଵ,௜,௧ is a vector of the resulting (adjusted) fitted values, ௜ܹ 

the vector of financial linkage weights and ߛᇱ the vector of coefficients.  
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Bush et al. present another discrete choice model, a logit regression, to explain crisis periods. In 
comparison to the other approaches, their variable choice is rather data driven. They employ a 
principal components analysis (PCA) in a data rich environment with international data availability to 
guide their choice of right-hand side variables. The outcome of the PCA analysis suggests the usage of 
the following variables: credit-to-GDP gap, accounting leverage ratio, liquid asset ratio and a proxy 
for the price of risk (VIX). The simple logit panel regression model can be presented as follows: 

௜௧ܥሺܾ݋ݎܲ																																										 ൌ 1ሻ ൌൌ
ଵ

ଵା௘షቀഀ೔శ܆౟౪ഁ೔೟
ᇲ ቁ
                                                (3) 

where ܾܲ݋ݎሺܥ௜௧ ൌ 1ሻ is the probability that country i at time t is in a crisis state. As independent 
variables, the vector ௜ܺ௧ contains the four different explanatory variables. In addition, the parameter ߙ௜ 
represents country fixed effects. The approach also employs robust standard errors. The data frequency 
is different from the other approaches due to data availability issues. Since the calculation of 
accounting leverage relies on bank balance sheet data, this model has to employ annual data. The 
underlying aim of their specification is to find a combination of indicators, which anticipates crises 
with sufficiently long lead for policymakers to act. 

Antunes et al. estimate dynamic probit models, comparing them with simple multivariate probits. The 
latter models make the restrictive assumption that all observations are independent, hence no dynamics 
is considered. When observations over time (time series) are available, time dependence may exist and 
it may be of interest to account for these dynamics. One possibility is to add lags of the dependent 
variable to the models, thereby estimating dynamic probits. Antunes et al. consider variants of the 
general dynamic probit model representation 

* 0.75
, , ,1 1 1 1 1

p d p p d

it kj ij t k k i t k kj ij t k itk j k k j
y x y D u         

           

 

where ity  is a binary crisis indicator, *
ity  is a latent variable such that 1ity   if * 0ity  and 0 

otherwise; , , 1,...,ij tx j p corresponds to a set of p exogenous covariates, ,i t ky   , k=1,..,p corresponds 

to the kth lag of the crisis indicator and ui,t denotes a normally distributed random error term. 
Hence, based on (1), for empirical purposes two distinct models are considered: i) a marginal model 

which results from setting 1 ... 0p    ,	 i.e., only considers the effects of covariates on the 

probability outcomes and treats serial dependence as a nuisance which is captured through association 
parameters; ii) a transitional model which explicitly incorporates the history of the response in the 

regression for *
ity  (complete model (1)). Hence, in this way, each unit specific history can be used to 

generate forecasts for that unit, as opposed to the marginal model which makes forecasts solely on the 
basis of the values of the exogenous variables. In addition, Antunes et al. also explore dynamic probit 

models with extreme behaviour indicators 
0.75
, ,   1,...,ij tD j p . The objective is to better capture 

periods in which some explanatory variables reach extreme values. In practice, when the 75th 
percentile of a variable is exceeded, a dummy variable is included.  

Behn et al. investigate how early warning performance can be improved in a multivariate (logit) 
framework. Starting from the notion that the domestic credit-to-GDP gap (as used in BCBS 2010) 
performs well in univariate signalling models predicting financial crises, the authors build a 
multivariate model which includes credit variables, other macro-financial variables and banking sector 
variables. Moreover, they attempt to capture some of the potential spillover effects by incorporating 

(4)
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global2 variables into their models. Formally, the logistic regression model can be presented as 
follows: 

௜௧ݕሺܾ݋ݎܲ ൌ 1ሻ ൌ 	 ቈ
eഀ೔శ೉೔೟

ᇲ ഁ

ଵାeഀ೔శ೉೔೟
ᇲ ഁ
቉                                        (5) 

 
where ܾܲ݋ݎሺݕ௜௧ ൌ 1ሻ depicts whether a country is in a pre-crisis vulnerable state (i.e. the common left 
hand side variable in the exercise. As independent variables, the vector ௜ܺ௧ includes credit and macro-
financial variables on the domestic and on the global level as well as domestic banking sector 
variables. The estimations also include a set of country dummy variables ߙ௜ in order to account for 
unobserved heterogeneity at the country level (country fixed effects).3 Finally, the approach uses 
robust standard errors clustered at the quarterly level in order to account for potential correlation in the 
error terms that might arise from the fact that global variables are identical across a given quarter. The 
analysis is conducted as much as possible in a real-time fashion, meaning that only information that is 
available at a particular point in time is used. As such, all de-trended variables have been calculated 
using backward trends, thereby only using information that was available up to that point. 
Furthermore, the explanatory variables have been lagged by one quarter, also to account for 
endogeneity bias through simultaneity. 

Neudorfer and Sigmund employ a Bayesian Random Coefficient Logit Panel model. This model is a 
special case of a generalized linear mixture model that contains fixed and random effects. In a way the 
term “fixed” and “random” are a bit misleading: arguably it is more appropriate to call them “general” 
and “country-specific” effects. If these effects are translated into an estimation framework they can be 
interpreted as follows: for each explanatory variable two coefficients are estimated: a “general” 
coefficient which is common for all countries and a “country-specific” coefficient which is different 
for each country. As a consequence, a random coefficient model covers the middle ground between the 
implausible assumption of homogeneity across countries (as assumed in a pooled model) and the 
infeasibility of treating all countries differently in the sense of being estimated separately.  
To account for the dichotomous property of the pre-crisis variable, we apply a logistic transformation 
of the pre-crisis variable which does not change the ideas behind the generalized linear mixture 
models. Formally, the model can be presented as follows:  

௜,௧ݕ																																																	 ൌ ௜,௧ݔ௜′ߚ ൅ ௜ߚ௜,௧ߝ ൌ ߚ ൅  ௜ߛ

where ui,t denotes the random error term, xi,t is a K × 1 vector of exogenous variables and βi,t is the K × 
1 vector of coefficients. Further β denotes the fixed effects that are the same for all individuals i. ߛ௜,௧ is 

a Kx1 vector of a stationary random variable with a zero mean and a constant variance. The vector 
represents the country specific slope heterogeneities that are thus called random effects. Neudorfer and 
Sigmund then model response probabilities using the logit function. The aim of the exercise is to 
maximise the contingency matrix’s diagonal, i.e. to maximise true positives and true negatives. 

Kauko applies a univariate signalling approach which is based on the assumption that long lasting 
excessive credit growth gradually becomes more problematic. In previous research, it has been 

                                                            
2 Global variables are depicted by the (GDP-weighted) averages of the domestic variables across all EU countries plus Canada, Japan and the 
United States.  
3 There is an argument for omitting these dummies from the estimations as they automatically exclude all countries without a crisis from the 
estimation, hence introducing selection bias. However, not including them also induces bias, namely omitted variable bias caused by unit 
effects. As it is unlikely that financial crises are homogeneously caused by identical factors and as a Hausman test indicates unit 
heterogeneity, we have decided to include unit dummy variables in our estimations. See also Behn et al. (2013).  

(6)
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commonplace to measure  the growth of the loan stock in percentages, i.e. by dividing the growth of 
the loan stock by the size of the loan stock itself, consistently with the odd assumption that a credit 
expansion of given size is more dangerous if the existing stock of loans is small. However, it may be 
more realistic to assume that long lasting excessive credit growth gradually becomes more and more 
problematic. Hence, the 12-month difference in the loan stock is scaled by dividing it by GDP, not by 
the amount of debt. More specifically, the denominator is the five-year moving average of the nominal 
GDP. A serious depression is no sign of excessive credit growth, and the moving average of the GDP 
is largely immune to the short-term cyclical variation of output.  
The raw indicator is complemented by assuming that additional risk factors are needed to trigger a 
crisis. A crisis is almost impossible unless there is either contagion from abroad or a current account 
deficit. Previous research has demonstrated that mere credit growth is in most cases harmless unless 
either of these additional risk factors is present (Jordà et al 2011). Therefore, the difference indicator is 
divided by 10 unless either of these additional risk factors prevails. Formally, the measure is defined 
as follows:  

ଵܭ ൌ 500	000 ∗ ቈ
଴.ଷଷଷଷ∑ ௅೟

షభ
೟సషయ

ቀ
భ
భవ
ቁ∑ ௒೟

షభవ
೟సషభ

െ
଴.ଶହ∑ ௅೟

షళ
೟సషర

଴.଴ହ∑ ௒೟
షమయ
೟సషర

቉ 

where L equals loan stock and Y equals GDP. The K1 indicator is computed as the difference of credit 
stock divided by a five-year moving average of nominal GDP and is not very sensitive to business 
cycles. Moreover, its value is dependent on additional conditions. The indicator takes value ܭଵ  from 
the formula if either the current account of the previous year is smaller than zero or the contagion risk 

is detected or both. In contrast, it takes the value of 
௄భ
ଵ଴

 if there is neither a current account deficit nor 

contagion risk. The underlying idea is derived from the findings of Jordà et al.(2011) who based on a 
handful of advanced countries over 140 years observed that a banking crisis in the making could be 
identified based on credit growth and some additional factor, which could either be current account 
deficit or contagion from abroad. Moreover, the idea that a current account surplus is an almost perfect 
deterrent of banking crises is corroborated by e.g. the tables presented by Laeven and Valencia (2008) 
and various publications reviewed by Kauko (2014).  
 
Babecký et al. aim to deal with model uncertainty inherent to EWS by means of Bayesian model 
averaging (Madigan and Raftery, 1994; Raftery, 1995, 1996). Bayesian model averaging (BMA) 
considers model combinations based on weights determined according to the models’ fit. The 
following linear regression model is considered: 

ݕ                   ൌ ఊߙ ൅ ܺఊߚఊ ൅ ,ሺ0~ߝ					ߝ   ሻ                                                      (8)ܫଶߪ

where ݕ  is the dummy variable for crisis onset, ߙఊ is a constant, ߚఊ	is a vector of coefficients, and ߝ  

is a white noise error term. ܺఊ denotes some subset of all available relevant explanatory variables, i.e., 

potential early warning indicators ܺ. The number K of potential explanatory variables yields 2୏ 
potential models. Subscript γ is used to refer to one specific model out of these 2௄ models. The 
information from the models is then averaged using the posterior model probabilities that are implied 
by Bayes’ theorem:  

              
)(),|(),|(  MpXMypXyMp 

 

where  ݌ሺܯఊ|ݕ, ܺሻ is the posterior model probability, which is proportional to the marginal likelihood 

of the model  ݌ሺܯ|ݕఊ, ܺሻ times the prior probability of the model ݌ሺܯఊሻ. 

(7)

(9) 
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The robustness of a variable in explaining the dependent variable can be expressed by the probability 
that a given variable is included in the regression. It is referred to as the posterior inclusion probability 
(PIP) and is computed as follows: 

             0

( 0 | ) ( | )PIP p y p M y


 





   
          

The PIP captures the extent to which we can assess how robustly a potential explanatory variable is 
associated with the dependent variable. Variables with a high PIP can be considered robust 
determinants of the dependent variable, while variables with a low PIP are deemed not robustly related 
to the dependent variable. 
 
Joy et al.4 aim to identify a set of economic “rules of thumb” that characterise economic conditions 
preceding the onset of banking crises. They employ a novel nonparametric approach - Classification 
and Regression Tree methodology (CART), specifically a Binary Classification Tree (BCT). This 
methodology permits the detection of key variables driving binary crisis outcomes, allows for 
interactions among key variables and determines critical tipping points. The multivariante CART tries 
to provide a more organized selection of the crises triggers from a relatively rich set of variables. The 
data are partitioned recursively and within each partition a simple prediction model is fitted. As a 
result, the partitioning can be represented graphically as a decision tree. CART thus searches through 
different possible splits for all explanatory variables and selects those splits that best separate crisis 
episodes from no-crisis episodes. The splitting criterion is the minimization of a loss function based on 
a cost that rises when the actual split deviates from the perfect split, i.e. where the perfect split 
partitions all crisis episodes into one node and all no-crisis episodes into another. 

Let p(i|t) be the fraction of occurrences belonging to class i at node t. In a two-class problem, such as 
here, and omitting the reference to node t, the class distribution at any node can be written as (p0, p1), 
where p0 is the posterior probability of a no-crisis observation falling into node t, and p1 is the 
posterior probability of a crisis observation falling into node t. Measures for selecting the best split are 
based on the degree of impurity in the child nodes. The more skewed the distribution, the smaller the 
degree of impurity. A node with class distribution (0, 1), for instance, has zero impurity, while a node 
with class distribution (0.5, 0.5) has maximum impurity.  

The Gini criterion is employed as a primary splitting rule, which corresponds to the following impurity 
(or loss) function i(t), which is minimised:  

																		igini	ሺtሻ	ൌ	∑	p0ሺtሻp1ሺtሻ																																																																													(11)	

Alessi and Detken aspire to provide policy makers with a set of early warning indicators helpful in 
guiding decisions on when to activate counter-cyclical capital buffers (CCB). Similarly to Joy et al., 
they use decision tree learning to build a predictive model. However, they apply a more advanced 
learning method than the Binary Classification Tree, to overcome its lack of robustness. Indeed, there 
could be multiple similarly important splitting variables at the same node, but only one would be 
shown in the tree while the information content of the others would remain hidden. Moreover, an 
indicator  with a generally poor predictive power could happen to feature in the tree due to the specific 
sample selection, but it would not survive a robustness check. For this reason, Alessi and Detken 
propose the application of the “Random Forest” technique (see Breiman 2001), which improves the 

                                                            
4 Joy et al. (2014) aim both at banking and currency crises using different prediction horizons that defined above. 
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stability and accuracy of the predictions via bootstrapping and aggregating a multitude of trees. Based 
on the results of the “Random Forest”, they then select the most relevant early warning indicators and 
construct a benchmark classification tree on them. 
 
The multivariate methodology proposed by Alessi and Detken to adopt decisions on the 
macroprudential instruments described above is decision tree learning, a greatly underutilized 
technology in economics. Indeed, while Classification and Regression Trees (CARTs) are extensively 
used in other disciplines, their economic applications are rare. Classification trees are a transparent 
tool which would also enable the public at large to understand and possibly anticipate macroprudential 
decisions. However, the main drawback of the tree technology is that, while it can be very good in-
sample, it is known for being not particularly robust to the inclusion of additional predictors or 
observations.  
 
Alessi and Detken overcome this problem by using the Random Forest method proposed by Breiman 
(2001). This framework is a state-of-the-art machine learning technique which consists in bagging, i.e. 
bootstrapping and aggregating, a multitude of trees. Each of the trees in the forest is grown on a 
randomly selected set of indicators and country-quarters. Analogously to the tree, the forest allows for 
interaction across the various indicators, is able to handle large datasets, is not influenced by outliers 
and does not require distributional or parametric assumptions. Together with being an extremely 
powerful predictor, the Random Forest allows to measure the importance of each of the input variables 
by evaluating the extent to which it contributes to improve the prediction. Notwithstanding the 
remarkably good performance of the Random Forest, we acknowledge that this is a black-box model 
and its predictions would be hard to defend, in particular if they would support the activation of a 
macroprudential instrument. Therefore, they rely on the Random Forest in order to identify the key 
indicators, on which we construct our benchmark early warning tree. By doing so, Alessi and Detken 
ensure that the variables selected to grow the tree are truly the most important ones in the pool and we 
rule out the possibility that the tree selects a relatively weak indicator which just happens to seem 
useful but would not survive a robustness check. 
 
 

V. Definition of Crises 

The left hand side variable is based on the so-called ESCB Heads of Research Database which has 
been collected by a team at the Czech National Bank in collaboration with the ESCB. This MaRs 
project (Babecký et al. 2012) has constructed discrete indices of the occurrence of banking, debt, and 
currency crises for EU-27 (and other OECD countries) by aggregating the available data sources, 
which, besides academic studies, included a survey of the ESCB Heads of Research who were 
provided with information about crisis occurrence in their respective countries alongside the 
corresponding crisis definitions. The influential papers that have been included are (in alphabetical 
order): Caprio and Klingebiel (2003); Detragiache and Spilimbergo (2001); Kaminsky (2006); 
Kaminsky and Reinhart (1999); Laeven and Valencia (2008, 2010, 2012); Levy-Yeyati and Panizza 
(2011); and Reinhart and Rogoff (2008, 2011). 

The database covers financial crises in EU and OECD countries over a period from 1970:Q1 to 
2010:Q4 and has been constructed as follows. For each country, three binary variables capture the 
timing of banking, debt, and currency crises. The corresponding crisis occurrence index takes a value 
of 1 when a crisis occurred (and a value of 0 when no crisis occurred).  
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With regard to the identification of banking crises used in this exercise, the experts were asked to use 
the following definition: a banking crisis is defined by significant signs of financial distress in the 
banking system as evidenced by (i) bank run(s) in relevant institutions or losses in the banking system 
(nonperforming loans above 20% or bank closures of at least 20% of banking system assets) or (ii) 
significant public intervention in response to or to avoid the realisation of losses in the banking 
system. In terms of the latter, intervention is considered significant if at least one of the following 
applies: (a) extensive liquidity support (ratio of central bank claims on the financial sector to deposits 
and foreign liabilities exceeds 5% and more than doubles relative to its pre-crisis level), (b) bank 
restructuring costs (the component of gross fiscal outlays directed to restructuring of the financial 
sector, excluding asset purchases and direct liquidity assistance from the treasury, is at least 3% of 
GDP in at least one fiscal year), (c) significant bank nationalisations (takeovers by the government of 
systemically important financial institutions, including cases where the government takes a majority 
stake in the capital of such financial institutions), (d) significant guarantees (either a full protection of 
liabilities or guarantees extended to non-deposit liabilities of banks; actions that only raise the level of 
deposit insurance coverage are not deemed significant), (e) significant asset purchases (including those 
implemented through the treasury or the central bank of at least 5% of GDP, cumulated) and (f) 
deposit freezes and bank holidays. 

For the exercise, the dependent variable is set to 1 between (and including) 20 to 4 quarters prior to a 
banking crisis as identified by the ESCB HoR database and to 0 for all other quarters in the data. In 
order to overcome crisis bias, we omit all country quarters which either fall within the period from 
three quarters before the onset of a banking crisis up until the end of a banking crisis. Moreover, we 
also exclude all quarters as of 2006q1 (i.e. 20 quarters before the end of the data series). Indeed, the 
dataset ends in 2010q4 and strictly speaking ignores a crisis happened in any country as of 2011. 
Therefore, the period immediately preceding the end of the sample cannot be classified as pre-crisis or 
non pre-crisis. Moreover, some exeptions are detailed below.  

Baltussen et al. use the ESCBs’ Heads of Research (HoR) definition and database for identifying the 
pre-crisis period for all EU banking crises. Since estimating the probability of crises in major trading 
partners is necessary to construct the interdependency index, Baltussen et al. also use the Laeven and 
Valencia (2013) database to construct the same LHS-variable of pre-crisis periods for non-EU 
countries (only) in equation (1). 

Bush et al. use two different crisis indicators as left-hand side variables to verify their results. They 
employ the ESCBs’ Heads of Research (HoR) banking crises database. Further, they use the Laeven 
and Valencia (2012) database. Although the two databases use deviating methodology to collect and 
identify banking crisis event, they do share considerable overlaps. Both LHS variables are adjusted for 
post crisis bias identified by Bussière and Fratzscher (2006).  

Antunes et al. use the the ESCBs’ Heads of Research (HoR) banking crises database as a basis for 
their dependent variable, as described in Antunes et al. (2014). To ensure the comparability of the 
results in this exercise, they transform this variable into a vulnerability indicator, following the 
approach of Behn et al. This variable takes the value 1 in the (4 to 20) quarters before the emergence 
of a banking crisis.  

In the same spirit, Sigmund and Neudorfer make use of a crises dummy dependent extracted from 
HoR database, where they assign 1 to crisis periods and 0 to others. Moreover, they add 0 to each 
quarter from 2011Q1 to 2012Q4 for all countries in their sample.  

In contrast, Kauko does not require in his approach a crisis dependent as he focuses on 
building an indicator of crisis incidence that signals crisis periods based on meeting 
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complementary conditions. No econometric model is presented in this approach; instead, the 
idea is to base the indicator on findings presented in previous literature.  
 
 

VI. Potential Early Warning Indicators 
 
VI.1. Overview and Sources 

Subsection VI.1. offers an overview of the right-hand side variables used in each early warning model 
along with their sources. The employed variables are also presented for each method in table A in the 
appendix. Unlike in case of the left-hand side variables certain discretion was allowed to construct the 
right hand side variables.  

Baltussen et al. select as leading indicators domestic credit and debt service ratio (BIS), GDP (IMF 
IFS, OECD), gross capital flows (IMF IFS) and REER appreciation (BIS). The raw variables are 
transformed in the following way. Credit gap is the deviation of private credit to GDP from a one-
sided HP trend (λ =400000) where the first 5 years are excluded because of the shortage of lags. REER 
growth, GDP growth and the ratio of credit to GDP growth are defined as the change from 4 quarters 
earlier, and capital flows as a 4-quarter rolling sum of all gross inflows to GDP. The rationale for this 
set of variables is to attempt to capture both domestic imbalances and global risk and contagion 
through financial flows. Furthermore, an asymmetric definition of both capital flows and credit growth 
is used to allow for a dispersion of the financial cycle as a result of excessive credit versus credit 
crunches and different types of extreme capital flow episodes (see Forbes and Warnock, 2012). 
Similar methodologies are used in the research on the effects of shocks on real economy cycles 
(Jiménez-Rodríguez and Sánchez, 2004, Lilien, 1982). 
 
Bush et al. use the BIS long series on total credit to the private non-financial sector as their credit data 
source and obtain the GDP data from IMF/OECD. They construct the credit-to-GDP gap series using 
the standard methodology by employing a one-sided recursive HP filter with a lambda of 400.000. In 
addition, they incorporate banking sector variables. The accounting leverage ratio (Common 
Equity/Total Assets) is obtained by aggregating the individual banking institutions’ leverage ratios on 
the country level for each year. The underlying data source of the accounting leverage data is 
Worldscope/Datastream.5 The liquid assets of the banking sector are obtained from the IMF IFS 
dataset. Finally, the price of risk measures (VIX proxy) is constructed by calculating the deviations of 
the general country stock market index from Datastream. The rationale behind their methodology is 
two-fold. Bush et al.’s purpose is to find a robust combination of indicators that is able to anticipate 
crises with sufficiently long lead for policymakers to act. In addition, they also aim to demonstrate the 
theoretical relevance of bank balance sheets and risk pricing in an empirical model.  

Antunes et al. used the dataset provided by the ECB for the horse race exercise. In order to maximize 
the information set available, in some cases the authors combined the series from a given source with 
data from other sources available in the dataset. The authors implemented a few transformations of the 
variables provided. First, they computed several ratios, such as credit-to-GDP and total assets of the 
banking system as a percentage of GDP. Second, they computed year-on-year growth rates for most of 
the variables. Finally, they estimated deviations from long-term trends, using one-sided Hodrick-
Prescott filters with different smoothing parameters. Ultimately they select the following variables 
with better performance based on a univariate analysis: equity prices (index), debt service ratio (year-

                                                            
5 Bush et al. employ certain coverage thresholds on the country level to ensure a solid representation of the banking sector in each country. 
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on-year), credit-to-GDP gap (one-sided HP filter with lambda = 400 000) and house prices (year-on-
year) for their analysis. 

Neudorfer and Sigmund choose credit-to-nominal-GDP gap computed as one sided HP filter (lambda 
of 400 000, BIS data), real GDP growth (EU data), house price growth (for each country the longest 
available time series), total asset growth, equity growth (longest available time series), capital and 
reserve growth and the debt service ratio.  

Kauko selects for his crisis incidence a measure of contagion data (BIS), which is used as a binary 
variable, that is equals 1 if the number of countries in crisis state is larger than it was 4 quarters before. 
Moreover, the, current account (IMF) is also treated as binary (surplus, deficit). These two variables 
are combined; it is assumed that crises are very unlikely unless there is either a current account deficit, 
contagion from abroad, or both. 

Behn et al. select as their credit variables the BIS long series on total credit to the private non-financial 
sector, and the credit-to-GDP gap as a deviation of the credit-to-GDP ratio from its long-term trend 
(one-sided (recursive) HP filter, λ=400 000). As for macro-financial indicators GDP growth, inflation, 
stock price growth and house price growth (from various sources, sourced through Haver Analytics) 
are chosen. Moreover, they incorporate banking sector variables such as aggregate capitalisation and 
profitability (OECD). The latter variables are interesting especially in the context of the counter-
cyclical capital buffer, as it enables the authors to assess the effect of higher banking sector 
capitalisation on the probability of future financial crises. The variables are lagged by one quarter.  

Babecký et al. use around 30 variable described in Babecký et al. (2012) and add for the purpose of 
this early warning exercise some additional variables. All HP filters they use are one sided, i.e. real 
time. They employ country fixed effects and transform the variables into percentiles for robustness 
check as in Behn et al. Moreover, they proxy global variables by using US data. Consequently, their 
dataset includes credit to GDP gap, credit growth, global credit to GDP gap, global credit growth, 
housing prices growth, equity prices growth, debt service ratio, real GDP growth, nominal GDP 
growth, inflation, money market rate, yield curve, M3, current account, government balance, global 
housing prices growth, global equity prices growth, BAA and AAA spread and interaction terms: 
credit to GDP gap and credit growth; global credit to GDP growth and global credit growth; global 
credit to GDP gap and credit to GDP gap; and global credit growth and credit growth. 

Joy et al. extend the set of potential leading indicators of Babecký et al. (2012) from macro-financial 
variables by incorporating domestic structural factors and international factors. One sided HP filter, 
i.e. real time, is applied while US data is used as a proxy for the world variable. Specifically, they 
select credit to GDP gap, credit growth, global credit to GDP gap, global credit growth, housing prices 
growth, equity prices growth, debt service ratio, real GDP growth, nominal GDP growth, inflation, 
money market rate, yield curve, M3, current account, government balance, global housing price 
growth, global equity price growth and BAA and AAA spread.  

Alessi and Detken include around 30 potential variables as triggers. With respect to credit-related 
indicators, they consider the private sector total credit and bank credit aggregates, in the form of ratios 
to GDP, growth rates and ‘gaps’, i.e. trend deviations; sectoral credit aggregates, namely loans 
extended to households and non-financial corporations, as ratios to GDP and rates of growth; and the 
debt service ratio, for the whole economy as well as for households and non-financial corporations. 
The level of public debt is also considered. The macroeconomic variables include real GDP growth, 
the unemployment rate, the inflation rate, M3 growth and ‘gap’, the change in the real effective 
exchange rate, and the current account. The market-based indicators considered are the real short and 
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long term interest rates, as well as real equity price growth. The real estate indicators are based on 
residential and commercial property prices and include property price growth and ‘gaps’, as well as 
standard valuation measures such as the house price to income and house price to rent ratios, taken in 
both forms: levels and ‘gaps’. 

 
 
VI.2.    Time Horizons and Frequencies 
 

Subsection VI.2. presents a comparison of country coverage, time periods and data frequencies for all 
studied methodologies. Table 5.1 concisely summarises the information. 

Baltussen et al. use variables over the time period from 1970 to 2010 for all EU countries. To calculate 
the interdependency index, they add important trading partners of the EU, including major G20 
economies, Norway and Switzerland.  Their forecast horizons are 4-12Q, 12-20Q and 4-20Q before a 
banking crisis, the variables are lagged by 1 period and quarterly data is used.  

Bush et al. employ an unbalanced panel with annual data from 1980 to 2010 for 15 EU countries (AT, 
BE, DE, DK, ES, FI, FR, GR, IR, IT, NL, PL, PT, SE, and UK). The EU country sample is derived 
from their original data set of 22 OECD countries. The authors are bound to the annual data 
frequencies, since the employed variables (e.g. accounting leverage ratio) constrain their choice. 
Hence, they are compelled to use annual horizons instead of quarterly horizons. The quarterly horizons 
are transformed to annual horizons to ensure comparability. Bush et al. estimate their model using the 
different forecast time horizons (late (1-2Y), early (3-5Y) and total (1-5Y) horizons) which are 
comparable and in line with the spirit of quarterly horizons.  

Antunes et al. use quarterly data for all EU countries from 1970 to 2010 to estimate their model. The 
authors attempt to use the longest time series available, which they in some cases aggregate from 
different sources using simple retropolation procedures. For some countries, there is no information 
for some of the variables used, thereby implying that these countries are not included in the 
multivariate analysis (Belgium, Bulgaria, Cyprus, Estonia, Croatia, Hungary, Lithuania, Luxembourg, 
Latvia, Malta, Poland, Romania, Slovenia and Slovakia). The final sample thus consists of 14 
European countries. 

Neudofer and Sigmund estimate their model for late (4-12Q ahead), early (12-20Q ahead) and total 
horizon (4-20Q ahead). The data are on quarterly basis over all available periods. They use overall the 
panel of 27 countries in their estimation (AT, BE, BG, CY, CZ, DK, EE, FI, FR, DE, GR, HU, IE, IT, 
LV, LT, LU, MT, NL, PL, PT, RO, SK, SI, ES, SE and UK).  

Kauko constructs K1 indicators for the whole EU 27 sample, excluding cases with insufficient data, 
and separately for two Scandinavian countries (Finland and Sweden) over the period of 1981-2010. 
The data he uses for calculating the indicators are on a quarterly basis.  

Behn et al. use a sample of 23 EU countries over the period of 1982Q2-2012Q3, using data with a 
quarterly frequency. They estimate their model over the late (4-12Q), early (12-20Q) and total (4-20Q) 
horizon.  

Babecký et al. employ the same variables as Joy et al., plus they incorporate also credit interaction 
terms. They cover 17 EU countries over the period of 1970-2010 on quarterly basis with prediction 
horizons of 4-20Q, 12-20Q, and 4-12Q. All entered right-hand side variables are of lag 1 to account 
for publication delay. 
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Joy et al. focus on EU-27 countries and use quarterly data over the period from 1970 
 to 2010. The model estimation is executed over late (4-12Q), early (12-20Q) and total (4-20Q) 
horizon. The right-hand side variables are lagged by 1 quarter due to publication delay. 
The sample of quarterly data considered by Alessi and Detken includes each of the EU countries, with 
data at best as of 1970Q1 until 2006Q1. All variables except market data are entered in the model with 
a 1 quarter lag to proxy for publication lags. 

In general, there appears to be a limitation in out-of-sample forecasting as 40% of crises episodes 
occur between 2008-2012. Due to the high concentration the 2008 crisis should be excluded from the 
sample. 

 

Author 
Countries 
Covered 

Time 
Period 

Data 
Frequency 

Baltussen et al. EU 25 1970-2010 Quarterly 

Bush et al. 
22 OECD 
countries 

1980-2010 Annual 

Antunes et al. 
all EU 

countries 
1970-2010 Quarterly 

Neudorfer, Sigmund EU 27 1970-2010 Quarterly 

Kauko EU 27 1981-2010 Quarterly 

Behn et al. EU 23 
1982Q2-
2012Q3 

Quarterly 

Babecký et al. EU 17 1970-2010 Quarterly 

Joy et al. EU 17 1970-2010 Quarterly 

Alessi, Detken 
all EU 

countries 
1970Q1-
2006Q1 

Quarterly 

    

Table 1: Country and Dataset Overview  

 
 

 
VII. Results of Different Methodologies 
 

This section focuses on presenting the main results and contributions of individual approaches to Early 
Warning.  
 
Baltussen et al. find that the interdependency variables emerge as robust predictors over all prediction 
horizons. Moreover, both the (positive) credit gap and negative credit to GDP growth emerge as 
significant counterparts over all three horizons, signaling that both credit excesses and acceleration are 
likely to precede full-blown financial crises. Positive capital flows show good predictive power over 
the shorter horizons, reflecting that capital flow surges may directly precede sudden stop episodes. 
 

Bush et al. demonstrate that their four variables (credit-to-GDP gap, accounting leverage ratio, liquid 
asset ratios, and price of risk) perform well among the different prediction horizons. The overall 
accuracy in terms of the AUROC remains stable throughout the horizons. In addition, Bush et al. 
confirm their choice of variables by conducting further robustness checks like adding further variables 
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(current accounts, spreads, GDP growth, inflation, etc.). The roles of credit gap, leverage, liquidity 
ratios and risk proxy are all consistent with their hypotheses and with the theory on bank balance 
sheets and risk pricing.  

Antunes et al. observe the performance of all three probit models (simple, dynamic and dynamic with 
an extreme behaviour indicator) for the late (4-12Q ahead), early (12-20Q ahead) and total (4-20Q 
ahead) horizons. They use two different dependent variables: the ESCB Heads of Research crisis 
dummy and the vulnerability indicator proposed by Behn et al. In the first case, all explanatory 
variables are lagged by 4-12, 12-20 or 4-20 quarters, depending on the forecasting horizon. The same 
number of lags is included for the dependent variable in the dynamic specification. In the second case, 
the explanatory variables are lagged by 1-12, 12-20 or 1-20 quarters. To improve the comparability of 
results across methodologies, only the latter results are presented in Section VII (the former are 
presented in Antunes et al. 2014). As mentioned before, Antunes et al. also explored the role of 
exuberance in the explanatory variables. Since the specifications using the vulnerability indicator do 
not have enough degrees of freedom to ensure an adequate quality of the results, these are therefore 
not reported in this paper. Antunes et al. also run out-of-sample and out-of-period exercises, which 
also maintain good fitting properties (in the first case, the Nordic countries were excluded from the 
estimation, while in the second case the global financial crisis was excluded). As mentioned above, the 
explanatory variables used are the equity price index, the year-on-year growth rate of the debt-to-
service ratio, the credit-to-GDP gap, and the year-on-year-growth rate of the house price index. 
However, in the model specification exercise, only the lags of variables which showed statistically 
significance at a 10% level were considered, thereby leading to the estimation of a more parsimonious 
model. Though in this model all the indicators provide statistically significant signs in several lags, the 
growth of debt-to-service ratios seems to provide particularly useful guidance for policymakers 
significantly ahead of crises. The credit-to-GDP gap also provides strong signals in all horizons. 

Behn et al. evaluate models based on the usefulness (U) measure capturing a trade-off between the two 
error types (missing crises, false alarms) depending on policy-makers’ preferences. They find that the 
inclusion of global variables adds value, in particular for shorter prediction horizons. They ultimately 
observe that the domestic credit-to-GDP gap is the most stable single explanatory variable across 
different models, while the inclusion of other macro-financial variables improves in particular earlier 
warning model performance. Global variables and banking capitalisation are important especially as 
one is closer to a crisis.  

Neudorfer and Sigmund observe that the Bayesian approach is a natural way to model probabilities or 
in this case, crisis probabilities, and is more helpful with variable selection than the simple logit 
model. Moreover, the authors note that the country specific random coefficients (the dispersion from 
average slope) are very important. The potential added value of this approach becomes evident when 
looking at the main empirical results. The cross-country dispersion is relatively high for total asset 
growth, debt service and house price growth. Random coefficients for equity price index growth and 
real GDP growth were not included as their dispersion was low. Overall, debt service ratio shows the 
best results among all variables. If debt service ratio is included in the model then HP-filtered credit to 
GDP does not add further explanatory power. The authors also find that equity price growth is a good 
early crisis indicator in the build-up face of the observed crisis periods while real GDP growth serves 
mainly as a control variable. 

Kauko finds that the AUROC over the total period (1-5 years) is larger than the one for a horizon of 3-
5 years. Both Kauko and Behn et al. find that international factors play an important role in EWMs, 
e.g. global credit variables or contagion.  
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Babecký et al. in their original paper (Babecký et al., 2012) found domestic private credit seems to be 
a good early warning indicator across crises and horizons. The usefulness of private credit is obtained 
by minimizing policy makers’ loss function with respect to Type I errors (missed crises) and Type II 
errors (false alarms). In terms of the horserace, over the horizon of 12-20 quarters BMA finds global 
variables significant while over the total horizon of 4 to 20 quarters a mixture of variables is selected 
that are also found significant over both late and early horizons. Babecký et al. execute out-of sample 
performance for UK and French crises in 1990s and find that prediction is more accurate closer to a 
crisis than over earlier horizons.  Moreover, inclusion of global indicators proves to be useful as global 
credit, BAA and AAA spread or global housing price growth as well as debt service ratio emerge to be 
important early warning indicators over the observed horizons. 
 
The binary tree methodology by Joy et al. allows explicitly for the fact that not all crises are alike and 
accommodates non-linearities by including conditional thresholds. Moreover, the approach accounts 
for variable interactions. Joy et al. extend the list of common leading indicators by incorporating 
domestic structural factors and international factors as they contribute to crises indirectly through their 
interaction with domestic variables. They find that a shallow yield curve coupled with high money 
market rates and low bank profitability are the most reliable indicators of banking crises. For currency 
crises, however, high domestic money market rates coupled with overvalued exchange rates are 
common predictors. Domestic structural characteristics, such as trade openness, do not seem to affect 
substantially the sensitivity to either type of crisis while international variables, such as world GDP 
and world credit, interact significantly with country variables. All in all, the CART method is a useful 
alternative to traditional methods. 

Alessi and Detken find that, irrespective of the prediction horizon, among the most important variables 
there are house price valuation measures. Total and bank credit and public debt also feature among the 
most relevant indicators, as well as the long term yield and key macroeconomic indicators, namely 
unemployment, inflation and the current account. With respect to bank credit, the conditional 
relationship between gaps, ratios to GDP and rates of growth should be considered.  The benchmark 
early warning trees grown on the selected best indicators (one for each prediction horizon, see section 
II) identify the respective early warning thresholds. The trees take into account policymakers’ 
preferences between Type I and Type II errors; for comparison purposes it is assumed that the weight 
attached to missed crises equals that attached to false alarms. The main message from the 
classification trees is that the conditional relationships among different early warning indicators 
change depending on the prediction horizon considered. 

 
 
VIII. Comparison of outcomes  
 

Section VIII presents strengths and weaknesses of each early warning model analysed in this paper. 
The objective of this section is to provide a brief assessment of each method by stating explicitly their 
advantages and disadvantages.   

Overall, Baltussen et al. find a good in-sample fit of their model both over the sample and for earlier 
banking crises, while maintaining a solid theoretical foundation. The multivariate model with an 
interdependency index outperforms a similar model without interdependency, as demonstrated by the 
statistically significant higher AUROC (p < 0.01). The approach opens avenues to further research not 
only as a specific model, but also as a method that has the potential to increase the explanatory power 
of other models. On the other hand, the proposed model has a more moderate out-of-sample 
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performance. Another important downside is that the simplifications resulting from a controlled (EU-
only) comparison and the implementation in traditional models, still suffers from some suspected 
biases. For example, performing an out-of-sample test by deleting selected crisis countries leads to the 
exclusion of important cross-section-dependent episodes and is thus counter-intuitive in this approach. 

The model by Bush et al. does feature a solid model fit. The inclusion of country effects in the logit 
model yields higher and more significant AUROC than logit models without these effects. In addition, 
fixed effects and pooled models successfully pick up the recent crisis for Denmark and Sweden. 
Contrary to these strengths, the use of annual data may be too raw as the use of less-frequent data 
reduces the frequency of model updates. Less-frequent updates, in turn, reduce a model’s power to 
forecast a crisis significantly before it occurs (Gramlich et al., 2010). However, this potential 
drawback has to be balanced against the novelty of their approach. The incorporation of the additional 
variables in comparison to the sole credit gap, especially the accounting leverage, seems to add 
additional explanatory power. Another drawback of the approach is the data requirements for the 
explanatory variables. Detailed bank-individual data is needed to construct the accounting leverage 
ratio. The scope of the countries is heavily constrained by the availability and coverage of banks 
balance sheets. Clearly, for more recent years the data availability is much better. In consequence, 
their sample and their findings do rely to a large extent on the last 15 years. In this spirit, it is not 
really surprising that the model does not pick up the Swedish 1991 crisis. Nonetheless, their model 
works quite well for the more recent times, but the generalizability of the results may be arguable due 
to the high dependence on the global financial crisis. Moreover, Bush et al. provide evidence on the 
importance of crisis dating. They are able to improve the regression results considerably by changing 
the dependent variable (ESCBs HoR crisis vs. Laeven and Valencia (2012) database). This implies 
that a regression may depend to a large extent on the crisis definition. For policy purpose, a clear 
definition of the forecast objective seems inevitable to obtain appropriate results.  

As for Antunes et al., the encouraging results obtained show that it is beneficial to include dynamics 
via lagged dependent into early warning models. A large battery of metrics confirms that adding a 
dynamic component to early warning crises models substantially improves the quality of the results, 
most notably in reducing the percentage of missed crises and in increasing the percentage of those that 
are correctly predicted. Antunes et al. (2014) find that the best performance is always obtained for the 
total period estimation. In contrast, the early period estimations provide the weakest results. However, 
when using the vulnerability crisis indicator used in this exercise, it was not possible to achieve 
convergence in the early period. Going forward, the dynamic nature of the model may be improved 
through the inclusion of lags of the latent variable, which is still work in progress. Though the model 
seems to work well both in and out of sample, it is necessary to bear in mind that all crises are 
different. Therefore, it is always possible that a crisis driven by factors not taken into account in the 
model is not captured with this and other similar methodologies. 

The greatest strength of the Bayesian random coefficient model used by Neudorfer and Sigmund is 
that cross country heterogeneity can be accounted for in a common model framework. In the early 
warning exercise almost each country has experienced pre-crisis periods that might have been caused 
by slightly different combination of adverse developments in various explanatory variables. Under 
these circumstances a common model framework that also allows for country specific effects makes 
perfect sense. A “fixed” coefficient for each variable measures the “average” impact on the pre-crisis 
probability whereas a “random” coefficient estimates the country-specific “random” impact. The 
combination of “fixed” and “random” coefficients gives the overall impact for each country and each 
variable. Moreover, for each variable the dispersion of the “random” effects gives a good indication of 
the cross-country heterogeneity. Finally, the Bayesian approach estimates the posterior mean of all 
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coefficients in the same way and does not rely on a rather complex two-step general least square 
estimator as in classical statistical inference. 

The methodology of Neudorfer and Sigmund manages to avoid several shortcomings of limited 
dependent variable panel models by accounting for country differences with respect to crisis indicators 
such as heterogeneity in signs for different countries. As for the pitfalls, the estimation results rely on 
data quality. The authors used longer time series for GDP data for all countries instead of BIS GDP 
data provided in the horse race database which as a result complicates method comparison. Moreover, 
it is well known in classical statistical interference random coefficient models are difficult to estimate. 
One needs to apply a two-step general least squares. Usually there is no closed-form solution to 
estimate the random coefficients. In a Bayesian estimation framework this weakness is less restrictive 
as one can use a hierarchical prior structure. Nevertheless there are convergence issues related to the 
posterior distribution of the coefficients. Depending on the data there might be not enough information 
in the data, especially for highly unbalanced panels, such that all posterior distributions of the 
coefficients converge to a stationary distribution as required in a Markov Chain Monte Carlo 
framework. From a practical point of view, the model provides a very good in-sample fit that might be 
problematic for out-of-sample forecasts. 

Kauko’s approach is not based on any kind of in-sample optimization; variables to be included or 
parameter values are not selected to suit the data. The main ideas have been derived from previous 
econometric research with data that only partly overlaps with the sample used in the analyses of this 
paper. Hence, the predictive power of the indicator is not likely to be limited to one specific part of the 
world during one specific era. Kauko proposes a simple statistic that is easy to compute and is well 
rooted in existing literature. The approach also correctly identifies the 1990s crises in both Sweden 
and Finland. However, the developed measure has less than 50% ability to correctly predict crises 
while the missing crises rate is at least 65.15%, making it quite unreliable.   

Behn et al. achieve by their model a promising out-of-sample performance that signals, e.g. the 
Scandinavian crisis several years before its outbreak. As for weaknesses, the authors use fixed effects 
while some other approaches (Neudorfer and Sigmund) suggest that the inter-country differences are 
quite large. On a more general note, estimation over too large windows might not yield any 
meaningful results, e.g. Babecký et al. identify a mixture of early and late warning indicators as useful 
over the total horizon. 

Babecký et al. use the Bayesian model averaging technique to effectively resolve model uncertainty. 
BMA is able to predict crisis onset quite well and also serves as an insurance against using just one 
model that might be misspecified. In addition, the method does not suffer from sensitivity to left-hand 
side variable specification. As for the methodology pitfalls, there appear to be fewer early warning 
indicators selected by BMA over longer horizons and for the total horizon of 4-20 quarters AUROC 
value is the smallest from among all horizons. Moreover, not all coefficient signs are intuitive and 
results tend to be sensitive to prediction horizon selection. In order to account for nonlinearities and 
variable interactions they need to be input explicitly, i.e. by hand.  

Joy et al. identify a different set of variables as potential leading indicators for varying horizons. Over 
the late horizon of 1 to 3 years global credit growth and global growth of housing prices act as banking 
crisis triggers. Over the early horizon of 3 to 5 years global credit to GDP gap and money market rate 
emerge as the most important crisis triggers while over the total horizon BAA and AAA spread and 
global credit to GDP gap are of interest. Despite these results being quite decisive, there are several 
pitfalls to keep in mind for this method. First, AUROC values appear similar to those reported by 
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other approaches but equally suffer from many false alarms. In line with previous observations, the 
smallest AUROC is for the total horizon. Second, usually only the variables in the first three levels of 
a binary tree are informative as crises triggers while variables in lower levels of a tree are not very 
intuitive. Third, trees are very sensitive to prediction horizon selection. Similarly, given a limited 
number of crises, time period and country coverage matter in the final estimation.  

There are several strong aspects of the methodology by Alessi and Detken. First, the model is able to 
attain a very high AUROC despite excluding from the analysis the quarters immediately preceding the 
crisis and the crisis periods themselves, in which arguably the relationship between the explanatory 
variables and the crisis indicator is strongest. Second, the benchmark classification trees yield positive 
double digit usefulness, although their predictive performance has been penalized by “pruning” those 
nodes which make no economic sense but nevertheless help lowering the error rate.  Third, as there is 
no time dimension in the decision tree framework, the out-of-sample prediction can be executed for 
every crisis, and in fact the “Random Forest” algorithm consists in carrying out n out-of-sample 
exercises. To mention weak points, the benchmark regression trees sacrifice robustness to some extent 
in favour of clearly identified early warning thresholds. 

To conclude the outcome comparison section, the performance of individual EWMs is presented in 
accordance to the rules of the game, i.e. by reporting the size of an area under receiver operating 
characteristics curve (AUROC) which measures the forecast quality, the percentage of type I errors 
(missing crises), percentage of type II errors (false alarms) and by the measure of usefulness, which 
weights both error types with respect to policymakers´ preferences assuming balanced preferences. 
These four evaluation criteria are reported for each methodology over the three horizons, late of 4-12 
quarters, early of 12-20 quarters and total of 4-20 quarters in tables 2, 3 and 4, respectively. 

4-12 quarters 
Horizon 

AUROC 
Type I 
error 
(%) 

Type II 
error (%) 

Absolute 
usefulness 

Baltussen et al. 0.875 12.0 31.0 0.287 

Bush et al. 0.730 38.0 36.0 0.130 

Antunes et al. 0.912 40.0 4.65 0.277 
Neudorfer, 
Sigmund 

0.989 8.9 2.3 0.210 

Kauko 0.870 79.3 1.44 0.096 

Behn et al. 0.920 5.6 24.7 0.349 
Babecký et al. 0.892 5.6 34.8 0.298 

Joy et al. 0.952 3.2 12.8 0.42 

Alessi, Detken 0.925 38.0 4.0 0.29 
                     Table 2: In-sample performance statistics over the late horizon 

12-20 quarters 
Horizon 

AUROC 
Type I 

error (%) 
Type II 

error (%) 
Absolute 

usefulness 

Baltussen et al. 0.885 8.0 30.0 0.308 

Bush et al. 0.700 48.0 26.0 0.130 

Antunes et al. N/A N/A N/A N/A 
Neudorfer, 
Sigmund 

0.9929 10.3 2.45 0.220 

Kauko 0.720 65.15 25.04 0.05 

Behn et al. 0.947 9.5 11.1 0.397 

Babecký et al. 0.882 7.8 30.9 0.307 
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Joy et al. 0.945 0,9 11.8 0.436 

Alessi, Detken 0.93 30.5 6.0 0.32 
                    Table 3: In-sample performance statistics over the early horizon 

 

4-20 quarters 
Horizon 

AUROC 
Type I 
error 
(%) 

Type II 
error (%) 

Absolute 
usefulness 

Baltussen et 
al. 

0.889 6.2 31.1 0.314 

Bush et al. 0.720 50.0 23.0 0.135 

Antunes et al. 0.974 16.0 2.1 0.4097 
Neudorfer, 
Sigmund 

0.9928 5.5 2.93 0.395 

Kauko 0.893 88.75 1.74 0.047 

Behn et al. 0.931 7.3 22.0 0.354 

Babecký et al. 0.856 7.9 59.9 0.161 

Joy et al. 0.8416 0.0 42.5 0.288 

Alessi, Detken 0.928 48.0 3.0 0.245 
                                  Table 4: In-sample performance statistics over the total horizon 

 

IX. Concluding Remarks 
 
The Early Warning literature, in particular, has so far almost uniquely relied on two approaches, 
namely the signalling approach and the categorical dependent variable regression. The signalling 
approach has the advantage of being extremely straightforward. Indeed, the early warning signal is 
issued when the considered indicator breaches a pre-specified threshold, set by optimizing the past 
predictive performance. The downside of this approach is that it considers early warning indicators 
separately. Logit/probit regression, contrary to the signalling approach, offers a multivariate 
framework within which one can assess the relative importance of several factors. However, the model 
offers only an estimate of the contribution of each factor to the increase in the overall probability of a 
crisis, rather than a threshold value for each regressor. The early warning threshold is eventually set in 
a second step, referring to the estimated probability of a crisis. Moreover, this framework is unable to 
handle unbalanced panels and missing data, which is a serious issue in particular with credit data, with 
the result that the regression can ultimately be estimated only on a relatively short sample. Decision 
trees, and classification trees in particular, retain the advantages of both approaches as they are on the 
one hand very easy to explain and use, and on the other hand able to provide an early warning system 
where the relevant indicators are considered in a unitary framework. 

If anything, the main conclusion to draw from the horse race exercise is that multivariate approaches, 
in their many variations, generate potentially very useful early warning results and offer considerable 
improvements over univariate signalling variables in terms of crisis prediction performance. Having 
said this, each multivariate approach has its strengths and weaknesses. For example, multivariate logit 
models tend to reduce both type I and type II errors (although admittedly less so than decision trees in 
the case of type II errors) and enable researchers to easily gauge the marginal contribution of each 
individual variable. Yet, the reliability of their results tends to be sensitive to exact model specification 
issues. In turn, decision trees tend to reduce type II errors as they allow for conditioning the effect of 
one variable on particular values of other variables, thereby giving very specific circumstances in 
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which a signal is released. Also, they are less restrictive to the inclusion of, for example, level 
information as non-stationarity is not an issue for this type of approach. Still, not much is known yet 
regarding the out-of-sample performance of decision trees.  

In the context of applying these results to macro-prudential policy and taking the strengths and 
potential weaknesses of each approach into consideration, there is a reason to argue that the use of a 
suite of multivariate models could be a superior choice when developing empirical macro-prudential 
policy instruments. This argument holds especially under the assumption that policy makers do not 
have strong ex ante preferences towards minimising type I versus type II errors. Moreover, as it seems 
logical that such preferences vary between policymakers in different jurisdictions and evolve over 
time, a broad empirical approach based on several early warning methods seems warranted, in 
particular as policy makers are still to discover the potential effects of macro-prudential instruments on 
financial stability and the real economy.  

The previous analysis of various early warning models is used to highlight that some issues are worthy 
of further research with the aim of improving future contributions to this stream of literature.  

First, a large number of lags leads to a reduction in the number of crises in the sample, i.e. over more 
distant horizons their crises coverage ratio declines. Second, the differences among countries are 
significant, thus estimating an EU-wide model, that disregards country effects, has its costs. Third, the 
contingency matrix over the late 4-12 quarter horizon shows more errors (false positives and false 
negatives) than over the whole horizon while the results are even worse for the early 12-20 quarter 
horizon. Fourth, some variables change signs for different estimation horizons which could either 
mean a change of regime or a correction of situation, indicating that nothing needs to be done.  The 
two, however, are difficult to distinguish. 
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