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Abstract

Explanations of why asset prices are affected by changes in the rel-
ative quantities of safe debt– including central bank asset purchases–
often appeal informally to a “portfolio balance”channel. I show how this
mechamism can be incorporated into structural, arbitrage-free models of
the yield curve using a solution method that allows for a wide range of
nonlinearities. I apply the approach to estimate a model in which in-
vestors have preferences over real returns, inflation is heteroskedastic, the
short rate is bounded by zero, and the maturity structure of outstanding
Treasury debt varies stochastically. This model fits yields and excess
returns on nominal bonds well since 1971, and it suggests that the dura-
tion of Treasury supply explains a portion of the variation in term premia
that is comparable to the portion explained by inflation risk. On the other
hand, partly reflecting an attenuation of portfolio-balance effects when in-
terest rates are near zero, the Federal Reserve’s asset purchase programs
are estimated to have had a fairly small impact on the yield curve by
removing duration from the market.

∗Federal Reserve Bank of Chicago. Contact: thomas.king@chi.frb.org. I thank Stefania
D’Amico, Jonathan Goldberg, Francisco Vazquez-Grande, and seminar participants at the
Federal Reserve Bank of Chicago and the Federal Reserve Board for helpful comments and
discussions. Roger Fan provided excellent research assistance. The views expressed here do
not reflect offi cial positions of the Federal Reserve.

1



1 Introduction

The effect of government liability structure on financial conditions is relevant
for optimal debt-management policy, the potential role of safe assets in the
economy, and the transmission of monetary and fiscal policy through financial
markets. It also has implications for theoretical and empirical modeling of
interest rates, asset prices, and macrofinancial dynamics. These issues have
received particular attention following the recent efforts of several central banks
to reduce long-term interest rates by purchasing large quantities of government
debt and other securities. In the United States, this policy has taken the form
of the Federal Reserve’s Large-Scale Asset Purchase (LSAP) programs, which
have, at the time of this writing, removed over $3 trillion of government-backed
debt from the market.
Recent empirical work has been nearly universal in concluding that fluctu-

ations in government debt do have significant effects on the term structure of
interest rates and, most likely, on other asset prices.1 While much of this evi-
dence comes from studies of central-bank asset purchases themselves, enough of
it derives from other episodes to demonstrate that the mechanism transmitting
debt fluctuations to financial conditions is not unique to recent experience or,
for that matter, to monetary-policy interventions. A general theme of this liter-
ature is that changes in Treasury debt structure that increase the interest-rate
risk borne by investors seem to result in higher long-term yields and greater
excess returns on long-term bonds. Yet, despite a few theoretical advances, the
profession lacks a comprehensive framework that can explain these phenomena
or provide quantitative guidance to policymakers on their relevance.
This paper considers a class of arbitrage-free, rational-expectations models

in which the relative amounts of default-free assets held by the public can matter
for the term structure of interest rates and other asset prices. The way that
this happens is that prices adjust to make investors willing to hold whatever
securities are outstanding in each period, given that they know that security
prices will be determined in the same way in the next period. Investors do not
care about quantities of particular securities, but they do care about the overall
risk of their portfolios as reflected in the pricing kernel. Thus, any change in
the securty mix that increases the aggregate exposure to a given risk factor will
raise the prices of securities that depend on that factor. Resuscitating a term
that is now somewhat out of fashion, I refer to this mechanism as the “portfolio
balance”channel.
The original portfolio-balance models, in the tradition of Tobin (1961),

mostly had to do with substitution between money and bonds and have been
shunned by more-recent authors because they modeled demand for those in-
struments in an arbitrary, reduced-form way (see for example, Woodford, 2012).

1See Bernanke et al. (2004), Kuttner (2006), Gagnon et al. (2010), Greenwood and
Vayanos (2010, 2014), Krishnamurthy and Vissing-Jorgensen (2011, 2013), Meaning and Zhu
(2011), Swanson (2011), D’Amico et al., (2012), Hamilton and Wu (2012), Ihrig et al. (2012),
Joyce et al. (2012), Li and Wei (2012), Rosa (2012), D’Amico and King (2013), Bauer and
Rudebusch (2014), Cahill et al. (2014), Chabot and Herman (2014), and Rogers et al. (2014).
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My approach retains the intuition that investors may have downward-sloping
demand curves for particular classes of assets, but it develops this idea using
the machinery of modern financial economics. Investors’willingness to substi-
tute among government liabilities is derived from familiar optimizing behavior
and no-arbitrage conditions. I do not assume that there is anything “special”
about money or short-term debt, although (as discussed in an appendix) it is
straightforward to add terms that allow for such specialness.
While asset-pricing models that rely on some version of the portfolio-balance

mechanism are fairly common, most assume either a static environment in which
the distribution of asset payoffs is fixed or investor expectations that are not
fully rational. (Frankel (1985) and Piazessi and Schneider (2008) are good ex-
amples that are discussed in some detail in the following section.) The reason
for these shortcuts is that, when current prices depend on payoffs that are them-
selves future prices, solving for the state-contingent price distribution involves
a nonlinear recursion that does not generally have an analytical solution. In-
deed, the only paper to date that has successfully characterized the equilibrium
in such a model of the term structure is Vayanos and Vila (2009). Yet even
that model can only be solved in closed form in the extreme cases of zero or
infinite risk aversion, despite an assumed linear-Gaussian factor structure that
helps to simplfy matters. As an alternative, I propose a computational method
for solving portfolio-balance models. The method requires only weak conditions
on the functional form of the pricing kernel and the dynamics of the state of
the economy. Consequently, one can dispense with assumptions that, though
perhaps analytically convenient, are likely to be unrealistic for the Treasury mar-
ket. In particular, the approach allows for departures from linearity, normality,
and homoscedasticity, and there are essentially no restrictions in modeling the
dynamics of the Treasury-supply distribution itself.
I apply the approach to study and estimate a particular model, building on

Greenwood and Vayanos (2014), in which mean-variance investors face risk from
fluctuations in the short-term interest rate, the structure of Treasury debt, and
inflation. The model includes two key nonlinearities: the variance of inflation
is time-varying, and the short rate is bounded below by zero.2 I include time-
varying inflation risk because, as discussed in the survey of Gurkaynak and
Wright (2012), previous studies have shown it to be an important driver of the
nominal term premium. The potential importance of accounting for the zero
lower bound (ZLB) on nominal interest rates, particularly when focusing on the
LSAP period, has been emphasized in reduced-form term-structure models by
Swanson and Williams (forthcoming), Priebsch (2013), and others.
Over the period 1971 —2013, the model explains bond prices well, accounting

for 90% of the variation in the yields on ten-year zero-coupon notes and 40%
of the variation in their (hypothetical) excess returns. Consistent with other

2The Greenwood-Vayanos model is linear and does not include inflation. It is a special
case of Vayanos and Vila (2009). In particular, in Vayanos-Vila, the supply distribution faced
by arbitrageurs is endogenous, whereas in Greenwood-Vayanos this endogeneity is shut down
and bond supply curves are vertical. Both models are members of the portfolio-balance class
considered here.
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empirical studies, it generates an estimate of the term premium that varies sig-
nificantly both over the business cycle and at a lower frequency, rising by about
200 basis points from the early 1970s to the mid-1980s and then gradually re-
ceding. While the three sources of exogenous variation interact nonlinearly to
compose the term premium, changes in inflation risk and changes in Treasury
debt structure are of roughly equal importance over the full sample. In particu-
lar, an increase in Treasury duration is responsible for most of the early run-up
in the term premium, and a moderation of inflation risk is responsible for most
of its subsequent decline. Toward the end of the sample, some of the reduction
in the term premium is also explained by lower short-rate risk as the short-rate
distribution approaches the ZLB.
Despite the importance of Treasury duration for the term structure over the

long run, the model implies that the Federal Reserve’s LSAP programs had only
modest effects by reducing the interest-rate risk in the hands of investors– on
the order of 20 basis points for the ten-year yield. Observers of LSAPs have
frequently asserted that their effect on interest rates comes from “removing
duration from the market.”3 It is precisely this effect that the portfolio-balance
model formalizes and shows to be weak. The conclusion that duration removal
may not be the primary mechanism involved in LSAPs is consistent with the
recent event-study analyses of Krishnamurthy and Vissing-Jorgensen (2013) and
Cahill et al. (2014). As those authors note, the effects of Treasury purchases
might instead be explained through a scarcity channel (as in D’Amico and King,
2013) or through the signals that unconventional monetary policy sends about
future short-term rates (as in Bauer and Rudebusch, 2014).
The primary reason that duration risk does not matter much in the case of

LSAPs, even though it is important in general, has to do with the nonlinearity
created by the ZLB. The truncation of the lower tail of the rate distribution
at zero reduces volatility along the entire yield curve, and– since duration ef-
fects depend on the product of duration and volatility– render this channel less
effective. (Doh, 2010, also makes this point.) The reduction in interest-rate
volatility is even greater when the central bank broadcasts its medium-term
intentions for short-term interest rates through so-called “forward guidance.”
Thus, forward guidance and LSAPs, two tools of monetary policy that are of-
ten viewed as complements at the ZLB, actually offset each other somewhat
in terms of their effects on longer-term yields. More broadly, the structure of
government debt matters most for interest rates when interest-rate volatility is
high. This observation should inspire caution if the Federal Reserve needs to
sell assets at some point, since, to the extent that the path of policy is likely to
be less certain in that environment, the duration effect could be asymmetrically
large relative to the period of asset purchases. Similar considerations may also
be worth policymakers’attention when designing the pattern of Treasury debt
issuance.
The paper proceeds as follows. Section 2 lays out the general properties

3For example, Gagnon et al. (2010) appeal strongly to this idea. Federal Reserve offi cials
who have advocated a similar view include Sack (2009) and Bernanke (2010).
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of portfolio-balance models and explains the conditions under which changing
quantities can affect asset prices under no-arbitrage. It also provides some
examples of such models in the literature. Generally speaking, those models
have not been solved under rational expectations and previous authors in this
literature have instead relied on shortcuts to try to estimate portfolio-balance
effects. Section 2.3 sketches the solution algorithm I use to solve such models,
with the details contained in an appendix. Section 3 shows how portfolio-
balance applies specifically to the term structure of interest rates and illustrates
how it results in "duration effects" in a calibrated one-factor model, both with
and without the ZLB imposed. Section 4 extends this model to the more
realistic case with inflation risk and stochastic supply and estimates the model
on U.S. data. Section 5 applies the model to study the LSAPs, and Section 6
concludes.

2 No-Arbitrage Portfolio Balance

2.1 General Asset-Pricing Relations

I use the term “portfolio balance”to encompass a broad set of models in which
the equilibrium prices of financial assets are related to the quantities of those
assets that investors must hold and in which the quantities can be considered
to have an exogenous or policy-dependent component. In particular, suppose
there exists a finite number of assets N , with time-t prices pt = (p1t, ..., pNt),
and par values Xt = (X1t, ..., XNt). In equilibrium, investor wealth must be
equal to the value of all assets: Wt = X′tpt. The idea behind portfolio balance
is that fluctuations in the state of the economy that change the value of Xt will
change pt because expected returns– and therefore current prices– must adjust
to make investors willing to hold the outstanding supply of securities at each
point in time. In the most straightforward cases, the supply of each security
is treated as an exogenous quantity issued by a price-insensitive entity, such as
the government. More generally, Xt may itself depend on prices.
The absence of equilibrium arbitrage opportunities implies the existence of

a stochastic discount factor (SDF) Mt,t+s that prices all assets in the economy.
In particular, the price of any asset at time t is given by

pnt = Et [Mt,t+sqnt+s] ∀n (1)

where qnt+s is the asset’s payoff s periods hence and Et indicates the expectation
conditioned information at time t. This condition must hold for all horizons
s > 0. It can be rewritten as

pnt = exp [−srt]Et [qnt+s] + covt [Mt,t+sqnt+s] (2)

where rt is the time-t instantaneous risk-free rate of interest.
WhileMt,t+s could in principle depend on Xt in a number of ways, I restrict

attention to cases in which Xt does not enter Mt directly. That is, investors

5



do not care about the quantities of the particular securities that they hold per
se. This rules out, for example, models with convenience yields, monetary
services, or other special benefits that might attach to certain assets beyond
their pecuniary returns.4 Instead, I consider models in which Mt,t+s can be
written as a function of the return on wealth Rt,t+s and, possibly, of the state
of the economy, which is summarized by the vector st:

Mt,t+s = M (Rt,t+s, st, st+s) (3)

By definition,

Rt,t+s =
X′tqt+s
X′tpt

(4)

The response of the price of asset n to an incremental change in the quantity
outstanding of asset m is

∂pnt
∂Xmt

= Et

[
∂qnt+1
∂Xmt

Mt,t+s

]
(5)

+Et

[
qnt+1
Wt

∂M

∂Rt,t+s

(
qmt+s −Rt,t+spmt +

N∑
k=1

Xkt

(
∂qkt+s
∂Xmt

−Rt+1
∂pkt
∂Xmt

))]
While it is not possible to sign this reaction without specifying how payoffs are
determined and the additional properties of the pricing kernel, it is clear that
the derivative in equation (5) will not be zero in general. Indeed, a suffi cient
condition for quantities to matter for prices is that the covariance of Mt,t+s

and qkt+s is nonzero for some k. This is true even if we assume that asset
payoffs do not depend on the current portfolio allocation Xt. In that case, it is
straightforward to show that dpnt/dXmt = 0 for all n if and only if qmt+s/pmt
= Rt,t+s– that is, unless the return on asset m is equal to the return on the
market portfolio in all states of the world, changing the quantity of m will affect
all prices.
Readers familiar with Eggertsson and Woodford (2003) may wonder how the

above results relate to their widely cited "neutrality proposition," which states,
in essence, that ∂pnt

∂Xmt
= 0 in certain models so long as assets are valued only for

pecuniary returns. The answer is that Eggertsson and Woodford’s proposition
is derived under the assumption that investor utility is a time-separable function
of consumption. Consequently,Mt,t+s depends only on consumption in periods
t and t + s; it does not involve the market return Rt,t+s. Thus, condition (3)
does not hold, and there are no portfolio-balance effects.5 Yet, while time-
separable preferences are clearly an important case to consider, there are equally
important models in which (3) does hold. The following subsection considers
some of these models that have been applied by previous studies.

4Models with nonpecuniary returns are considered in Appendix A.
5Eggertsson and Woodford describe the logic of their result as follows. In their model, “the

marginal utility to the representative household of additional income in a given state of the
world depends on the household’s consumption in that state, not on the aggregate payoff of its
asset portfolio in that state. And changes in the composition of the securities in the hands of
the public don’t change the state-contingent consumption of the representative household. . . ”
[Emphasis in original.]
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2.2 Examples from the Literature

Although they are easy to write down, models of the above type are challenging
to solve. Fundamentally, the reason is that prices in these models depend on the
distribution of market returns, which is itself a function of future prices. The
diffi culties associated with this nonlinear recursion generally rule out analytical
solutions under rational expectations. This is true even in special cases that
restrict the form of M or the process for Xt in convenient ways.
One simplification that does allow a model like this to be solved analytically

is to suppose that the distribution of asset payoffs is fixed and that wealth is
predetermined. In this case, equation (5) reduces to

∂pnt
∂Xmt

=
1

Wt
Et

[
qnt+sqmt+s

∂M

∂Rt,t+s

]
(6)

Thus, for example, if the SDF is linear in Rt,t+s with slope coeffi cient θ and the
short rate is exogenous we have6

∆pnt = θcovt [qnt+sqmt+s]
∆Xmt

Wt
(7)

Since θ is typically negative (states of the world with higher returns are dis-
counted by more), raising the quantity of asset m lowers the price of asset n
whenever the two assets have positively correlated payoffs.
In a classic application of this type of model, Frankel (1985) considered a

case in which agents solve a Markowitz portfolio choice problem over a variety
of asset types:

max
wt

Et
[
R′t+1wt

]
− a

2
vart

[
R′t+1wt

]
(8)

where Rt+1 =
(
R1t,t+1 ... RNt,t+1

)
is the vector of asset returns, a is

the coeffi cient of relative risk aversion, and wt is the vector of dollar values
allocated to each asset. The maximization is subject to w′ti < Wt. Mean-
variance problems of this type result in an SDF that is linear in the market
return. Consequently, one can write:

Et [Rt+1] = exp [rt] + aΣtxt (9)

where Σt is the covariance matrix ofRt+1 conditional on time-t information and

xt =
(
x1t ... xNt

)
is the vector of asset shares. (I.e., xnt ≡ Xnt/

N∑
m=1

Xmt

.) Since (9) is just an equilibrium condition, it must be true for any value of
xt. Thus, if a policymaker can set xt to an arbitrary value, he can determine
the expected return on any given asset Et [Rnt+1]. (In the case of bonds, this is
suffi cient to determine period-t prices.) Friedman (1986), Engle et al. (1995),
and Reinhart and Sack (2000) are among the subsequent studies to exploit this

6The assumption that the short rate is exogenous implies ∂Et [M ] /∂Rt,t+s = 0, which
allows the product term in equation (6) to be reduced to the covariance term in equation (7).
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relationship. More recently, Gromb and Vayanos (2010) illustrate the effects
of quantities on prices in version of this problem in which there are only two
assets, and Neeley (2010) and Joyce et al. (2011) apply it specifically to the
study of LSAPs.
While this approach is useful for studying certain problems, its main diffi -

culty from a logical perspective is that it treats the distribution of future asset
prices– in particular the covariance matrix Σt– as exogenous. For example,
when taking this model to the data, Frankel (1985) and subsequent authors cal-
ibrate Σt to the unconditional covariance matrix of the historical returns data.
But the assumption of a fixed payoff distribution cannot be correct in general.
For multi-period assets, payoffs tomorrow depend on prices tomorrow, and those
should be determined in the same way as prices today. In terms of equation
(5), there is no reason to expect ∂qnt+1∂Xmt

to be equal to zero, particularly if there
is persistence in the value of Xt across periods. If prices depend on quanti-
ties, than the variance of prices must also, in general, depend on quantities.
Yet, as noted above, it is not generally possible to characterize this dependence
analytically.
Another important class of models in which portfolio-balance effects are

potentially operative are those involving recursive preferences. In particular,
consider a representative investor with Epstein-Zin-Weil utility over real con-
sumption. As Epstein and Zin (1989) showed, the SDF in this case can be
written as

Mt,t+s =

(
βG
− 1
ψ

t,t+s

)θ
(Rt,t+s − πt,t+s)1−θ (10)

where Gt,t+s is consumption growth, πt,t+s is inflation, and θ and ψ are utility
parameters. This SDF has the form of (3), and so the portfolio-balance channel
applies. Piazessi and Schneider (2008) study the relationship between bond
quantities and prices in this type of model. To solve the model, Piazzesi and
Schneider assume that investors have adaptive expectations over the asset-return
distribution, which they estimate using survey data and VARs. As they argue,
there may well be good reasons to believe that investors form expectations in this
way. However, it is also of interest to consider the case in which expectations
are set rationally. For a given vector of asset shares xt, it is evidently not
possible to solve analytically for the state-contingent price vector that satisfies
both equation (4) and equation (10) in all states of the world.

2.3 Solution Method

As illustrated in the cases above, it is not generally possible to solve portfolio-
balance models analytically for asset prices as functions of quantities under
rational expectations. The special cases in which it is possible (for example,
exogenous payoffs or risk neutrality) are typically not of practical interest. Here,
I propose a numerical method. This approach has the added advantage that it
places very few constraints on either the functional form of the pricing kernel or
the dynamics of the state vector. Consequently, it is straightforward to consider
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models with potentially important nonlinearities, such as the zero lower bound.
This section provides a thumbnail sketch of the solution algorithm; the details,
along with convergence results, are discussed in Appendix B.
As suggested above, the central diffi culty is that the solution for prices in-

volves the moments of future prices, and, under rational expectations, these
moments themselves must be endogenous. While it is common in asset-pricing
models for today’s asset prices to depend on the distribution of tomorrow’s asset
prices, the particular diffi culty with portfolio-balance models is that the SDF
itself depends upon equilibrium prices.
However, note that, since we take the law of motion for the states as known,

it is possible to calculate these moments for any given mapping of st to pt. This
observation suggests the following algorithm:

1. Guess a function pi(.) such that pt = pi(st).

2. Based on this function and the known law of motion for st, compute the
distribution of Rw

t,t+1, including its covariance with st and pt.

3. Using that distribution, solve for the updated function pi+1(st) via equa-
tion (1) and return to step 2.

The moments in step 3 cannot generally be computed analytically, and so a
quadrature scheme is used. The procedure is similar to that of Tauchen and
Hussey (1991).

3 Portfolio Balance in the Term Structure

3.1 Preliminaries

For the vector of payoffs qt, suppose that we impose the restrictions q1t =
1 and qn−1t = pnt−1 for n > 0. Evidently, the assets now represet zero-
coupon, default-free bonds, where the index n indicates the bond’s maturity
at time t. By definition, p1t = exp[−rt] is the price of the one-period bond,
and equation (2) determines the rest of the yield cuve. In particular, perfect
certainty corresponds to the “strong form” of the expectations hypothesis–
long-term interest rates are the average of expected short-term interest rates
(up to a Jensen’s inequality term). Otherwise, the covariance term in equation
(2) adds a risk premium to expected returns and a term premium to bond yields.
The SDF M only appears in this covariance; thus, quantity changes operate by
affecting term premia in the presence of uncertainty.
Restricting attention to bonds in this way, portfolio-balance effects take on a

special meaning– bond quantities affect bond prices through a duration channel.
That is, tilting the distribution of outstanding assets toward lower maturities
alters the term structure by "removing duration from the market," precisely the
effect that is often pointed to, in less formal terms, as the primary mechanism
through which LSAPs operate. (See, for example, Gagnon et al., 2011.) To
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date, the only paper to capture such duration effects in a theoretical model
that features both no-arbitrage restrictions and rational expectations is Vayanos
and Vila (2009). In that model, arbitrage investors solve a problem like (8),
but they interact with “preferred-habitat”agents who have downward-sloping
demand curves for assets of particular maturities. Thus, the portfolio shares xt
that they hold are endogenous. Assuming a linear-Gaussian factor structure,
Vayanos and Vila obtain an affi ne solution in which demand shocks that remove
long-term debt from the hands of arbitrageurs push down long-term interest
rates.
As the only model to incorporate supply effects into an otherwise standard

representation of the term structure, Vayanos-Vila has been highly influential in
the way that economists have designed and interpreted recent empirical studies.7

However, the presence of the preferred-habitat agents and the endogeneity of xt
in that model can obscure the fundamentally simpler relationship between prices
and quantities. The example below strips this mechanism to its essentials to
show how duration effects work. (Appendix A shows how Vayanos and Vila’s
model fits into the broader portfolio-balance framework.)

3.2 Example: A linear, one-factor model

Consider a model in which the short rate rt is the only source of stochastic vari-
ation and in which investors solve the mean-variance portfolio-choice problem
(8), where the available assets consist only of Treasury bonds with maturities
1, ..., N . The relative supply of bonds is fixed over time, xt= x. Bond prices
then solve the system of quadratic equations

pt = exp [−rt]
(
Et [qt+1]− a

Ωtx

pt′x

)
(11)

at each point in time, where Ωt is the conditional covariance matrix of the asset
payoffs qt+1. (This is the equivalent of equation (2) for the Markowitz model.)
Since the payoff on a one-period bond is always 1, the first row and column
of Ωt are zeros. The conditional variance of the price of a one period bond,
denoted ω21t, is the second diagonal element of Ωt. Since p1t+1 = − log rt+1,
this variance is a determinsitic function of the short-rate process and is a known
and exogenous quantity.
It is straightforward to show that the expectations hypothesis holds if x =

( 1 0 ... 0 ). That is, eliminating all duration from investors’portfolios
reduces the term premium to zero. On the other hand, as long as a > 0 and
x1 < 1, we have pnt < p1tEt[pnt+1], for n > 1, so that all risky assets require
a discount and all risky returns include a risk premium. Indeed, since rt is
the only source of variation, the term premium in this example reflects only the
compensation for bearing duration risk. Specifically, there is a single market

7See, for example, Doh (2010), Hamilton and Wu (2011), and Li and Wei (2012).
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price of risk given by the Sharpe ratio

λt =
Et [Rnt,t+1]−R1t,t+1

σnt
(12)

where σnt is the standard deviation of the return on asset n. This, in turn,
implies that all asset prices and returns are perfectly correlated, regardless of
the value of x or the dynamics of rt. In particular, there exist coeffi cients
Ant and Bnt such that we can write Rnt,t+1 = Ant + Bntp1t+1 for any n.8

The coeffi cient Bnt represents the response of the return on a risky asset to
the risk-free rate– the analogue of the “spot-rate duration” that appears in
continuous-time term-structure models. The standard deviation of the return
on the market portfolio can be expressed as σwt = ω1tx

′Bt, where Bt is the
vector of Bnt coeffi cients. Combining this with equation (12), we have

λt = aω1tx
′Bt (13)

analogous to a result produced by Vayanos and Vila (2009). Reducing the
quantity x′Bt is the model’s version of “removing duration from the market.”
Doing so will lower both the total risk of the Treasury portfolio and the price
of that risk.9

To implement the model numerically, take periods to be one year in length
and suppose that there are N = 30 bonds. Suppose that the short rate follows
a linear process

rt = φ0 + φ1rt−1 + εt (14)

where εt has variance σ2. For parsimony, I approximate the maturity structure
of government debt with an exponential distribution:

x ∝ exp [−z] (15)

where the parameter z is the average maturity outstanding. The exponential
approximation is likely to be a good one because the distribution of government
liabilities typically consists overwhelmingly of shorter maturities. For example,
as shown in Figure 1, liabilities with less than five years of duration (including
currency and reserves) account, on average, for about 80 percent of total face
value. The exponential functional form implies that, as in the data, the dis-
tribution is highly skewed toward securities with very low duration. However,
as discussed further below, the exact shape of the distribution beyond its first
moment is actually of little importance.

8Specifically, Bnt ≡ σnt/ω1t and Ant ≡ (1 − p2tBnt)/p1t. Because rt follows an AR(1)
process, the function Bnt has a similar form across n at each value of the short rate as in the
Vasicek (1977) model.

9Since (11) is the result of a Markowitz portfolio problem it also has a conditional CAPM
representation. Specifically, since Et[Rwt,t+1] =Et[qt+1]

′x/p′tx is the expected return on
wealth, we can write

Et[Rt,t+1]− rti = βt
(
Et[R

w
t,t+1]−R1t,t+1

)
where βt = Ωtx/x′Ωtx. The expected excess return on the market portfolio is Et[Rt+1]−rt =
ax′Ωtx.
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Let φ0 = 0.003, φ1 = 0.95, σ = 0.015, and a = 8. These values are
calibrated roughly to match the dynamics of the short-rate and the average
value of 15-year yield in the data. The black line in Figure 2 demonstrates how
the duration of the Treasury portfolio affects the behavior of asset prices in the
model by plotting the equilibrium values of the (inverse) price of risk λt across
possible values of z in this model. The relationship between duration and risk
prices is monotonic but nonlinear. Near the historical mean duration of 2.7
years (see the top panel of Figure 1), increasing duration by one year raises the
price of risk by about 50%.
Figure 3 illustrates how these risk prices translate into yields. I compare two

cases: z = 2.7 years and z = 2.0 years. As discussed in Section 5, the difference
of −0.7 years is approximately equivalent to the effects of the cumulative asset
purcahses by the Fed through 2012 (the first and second round of LSAPs and
the Maturity Extension Program). The difference in the maturity distribution
of securities is illustrated by the red bars in the top panel of the figure. The
effect on the yield curve, evaluated at the sample average value of the short rate,
is shown in the middle panel. For the calibration used here, the ten-year yield
is 56 basis points lower under the smaller-duration distribution. Again, this is
due to reductions both in the price of risk illustrated in the previous figure and
in risk itself. The latter is shown in the bottom panel of Figure 3, which plots
the standard deviation of one-year returns (the square-root of the diagonal of
Σt) under the two supply distributions.
Finally, we can demonstrate the earlier claim that the shape of the distri-

bution x is of little importance for the shape of the yield curve. Analytically,
equations (11) and (13) show that the individual asset share xn does not matter
for the individual asset price pnt. Only the weighted sum of asset shares x′Bt

is relevant, and it affects all prices in the same way. Consequently, this model
cannot produce local-supply effects from large quantity gluts or shortages in
particular sectors of the market. To illustrate this, consider a stark alternative
to the exponential shape used for the maturity distribution above. In particu-
lar, suppose that the distribution was nearly degenerate around the same mean
of z = 2.7, as shown in the top panel of Figure 4. This adjustment does slightly
increase the duration risk of the portfolio, primarily because it completely elim-
inates the risk-free one-year bonds from investors’portfolios. However, after
recalibrating a to match the average slope of the previous yield curve, there
is virtually no difference between the term structures generated under the two
distributions. This can be seen in the bottom panel of the figure, where the
solid blue line is the same yield curve shown in Figure 3, and the dashed red
line is the (recalibrated) yield curve at the same value of the short rate under
the degenerate supply distribution. Similar results obtain for other possible
choices of the shape of x.

3.3 Effect of the Zero Lower Bound

Since risk prices in portfolio-balance models are themselves a function of the
quantity of risk held by investors, heteroskedasticity can cause risk prices– and
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therefore term premiums– to differ significantly across states of the world. A
particularly important case of this is the zero lower bound on the nominal short
rate. The presence of this bound, all else equal, implies that there is less
uncertainty about short-term interest rates in the near future when the current
value of those rates is near zero. Consequently, investors in all bond maturities
face less near-term interest-rate risk and therefore demand lower risk premiums.
Furthermore, since equation (13) shows that the effect on risk prices of removing
duration from the market (in the sense of reducing the weighted average x′Bt)
is directly proportional to the variance of the one-period bond ω1t. Thus, the
reduction in the volatility of short-term interest rates induced by the ZLB will
also dampen duration effects.
To illustrate these outcomes in the simple one-factor model above, suppose

that, rather than allowing the short rate to follow an unrestricted AR process,
we append the condition

Pr [εt < 0] = 0 (16)

to equation (14). That is, let the distribution of the short-rate shock εt be
a truncated normal, where the truncation point varies with rt in such as way
that it always enforces the zero lower bound. The conditional distribution of
the short rate under this process is illustrated in Figure 5. The reduction in
volatility near zero is evident.
Refering back to Figure 2, the blue line illustrates risk prices calculated at

the ZLB for different values of duration; on average, they are roughly half of the
unrestricted case considered previously. Furthermore, the slope of the blue line
is considerably flatter than that of the black line, indicating that a given change
in duration has a smaller effect on λt when the ZLB binds. To see these results
in terms of the yield curve, the solid lines in the top panel Figure 6 correspond
to the same maturity distributions that were used in Figure 3. (2.7 years for
the blue line and 2.0 years for the red.) The same LSAP-type experiment that
caused a 56 basis point reduction when the short rate was at 5.8% causes only
a 29 basis point reduction when the short rate is at 0% with a binding ZLB.
The reduction in duration effects becomes even more pronounced if the short

rate is anticipated to stay near zero with a high degree of certainty for multiple
periods, because this results in a larger reduction in the variance of rates across
the term structure. This type of thought experiment is relevant because the
forward-guidance language that has been included in most FOMC statements
since 2008 is widely viewed as having essentially committed the Fed to keeping
rates near zero for a significant time into the future. To illustrate, the dashed
lines in the figure show the model’s outcomes when rt is constrained to equal
0 for both periods t and t+1 (and investors know this with certainty at time
t) and only then follows its truncated AR(1) process. The forward guidance
itself has a large effect on long-term rates; in this example, it reduces the 10-
year yield by 52 basis points (the difference between the solid and dashed blue
lines). However, with the forward guidance in place, the effect of the reduction
in duration on the ten-year yield is only 23 basis points, rather than 29. The
reason is that, as illustrated in the bottom panel, forward guidance in the one-
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factor model implies that the returns on all bonds in period t+1 are known with
certainty. Consequently, the risk premium for the period over which the forward
guidance is in place is zero, regardless of the amount of duration outstanding–
i.e., ω1t is zero, and so, by equation (13), the price of risk λt is zero. Thus,
although they both serve to reduce longer-term yields, forward guidance and
asset purchases are somewhat offsetting, at least if duration effects are the only
channel through which the supply distribution matters for prices.

4 A Three-Factor Model

While the one-factor model is useful for understanding the mechanics of portfolio-
balance effects, it lacks certain realistic features that would make it quantita-
tively credible. This section develops a somewhat more-sophisticated model of
portfolio-balance effects in the yield curve and brings that model to the data.
The aspects in which the model is more realistic than the one-factor case above
are that (1) duration itself is treated as a separate stochastic factor, (2) infla-
tion and the variance of inflation are also allowed to vary stochastically, and
(3) investors are assumed to value real, rather than nominal, returns. In ad-
dition, I assume that the ZLB is in effect. As noted in the introduction, this
model can be viewed as an extension of Greenwood and Vayanos (2014) that
incorporates the nonlinearities associated with the ZLB and inflation. The
importance of accounting for the ZLB, particularly when studying the LSAP
experience, was suggested by the results of the previous section. The addition
of inflation to the model is potentially important because inflation– or, more
precisely, time-varying inflation risk– has been shown to be an important deter-
minant of nominal term premiums. (See the literature surveyed by Gurkaynak
and Wright, 2012.)10

4.1 Model Setup

Investors solve the problem

max
wt
Et
[
R′t,t+1wt − πt,t+1

]
− a

2
vart

[
R′t,t+1wt − πt,t+1

]
(17)

where πt+1 represents the gross rate of inflation between periods t and t+ 1. It
is straightforward to show that prices solve

pt = exp [−rt]
(
Et [qt+1]− a

Ωtxt
pt′xt

− covt [qt+1, πt+1]

)
(18)

10There are three other, minor differences between this model and Greenwood-Vayanos.
First, the Greenwood-Vayanos model is in continuous time. Second, I use the exponential
form in (15) for the supply distribution, whereas they use a linear-factor structure. Finally,
they assume that market-value weights wnt are exogenous, while I assume that the par values
xnt are exogenous. None of these differences in approach is likely to have substantial effects
on the model outcomes.
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and that the nominal pricing kernel takes the form

Mt,t+1 = θ0t + θ1t
(
Rwt,t+1 − πt,t+1

)
Note that the portfolio weights xt now have time subscripts, as investors will
anticipate them to vary stochastically from period to period. Nonetheless,
the pricing equation (18) must hold at each point in time. Also note that
changes in xt have no direct effect on inflation-risk premia through portfolio
rebalancing. While they may change the covariance of prices with inflation
through their effect on the overall volatility of asset prices, these effects will
generally be second-order.

4.2 Estimation

I assume that inflation and the short rate are jointly determined by the process

rt = φ0 + φ1rt−1 + φ2πt,t+1 + εrt (19)

πt,t+1 = γ0 + γ1πt−1,t + επt (20)

subject to

Pr [rt < 0] = 0 (21)

where εrt is a truncated-normal disturbance with shape parameter σr, and ε
π
t is

distributed normally with time-varying variance:

σ2πt = ρ0 + ρ1|πt−1,t| (22)

where ρ0 and ρ1 are both non-negative. This system produces behavior of
the short rate similar to that depicted in Figure 5, except that now the con-
figuration of the curves in that figure depends on the level of inflation. The
dependence of the short rate on contemporaneous inflation, together with the
heteroscedasticity of inflation shocks, provides a simple way of capturing time-
varying covariance between rt and πt,t+1.

zt is assumed to follow and AR(1) process, independent of rt and πt,t+1.
This process is estimated using the data on aggregate duration of government
liabilities (see Figure 1), giving

zt = 0.11 + 0.97zt−1 + εzt

with the standard deviation of εzt equal to 0.16. Note that, although zt has the
interpretation of the average duration of debt outstanding, the entire distribu-
tion xt is still the input in the model, and the shape of this distribution at each
point in time depends on zt through equation (15).
Estimation of the remaining parameters proceeds by fitting the measurement

equations
ynt = ŷnt + ent (23)
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where ynt is the n-period yield in the data, ŷ
n
t is the corresponding yield gen-

erated by the model, and ent is an iid normally distributed measurement error,
for n = {5, 10, 15}. Estimation of this model without further restrictions in-
dicated that it was not well identified from the data on longer-term Treasury
yields alone. This is perhaps unsurprising, given that yields are highly serially
and cross-sectionally correlated and that several of the model parameters (e.g.,
risk and risk aversion) are likely to have very similar effects. I therefore take
two measures to aid identification. First, as is common in the term-structure
literature, I restrict the covariance matrix of the measurement errors to be di-
agonal. (This is equivalent to minimizing the weighted mean-squared errors
over the three long-term yields.) Second, I bring in information from the ob-
servable dynamics of the short rate and inflation themselves, rather than just
the information contained in the Treasury bond yields. Because the data are
observed monthly while the periods in the model are taken to be annual, joint
estimation is not straightforward, but the mixed frequencies are easily dealt
with using Bayesian methods. Specifically, I first estimate the system (19) -
(22) by maximum likelihood on non-overlapping annual samples, using only the
one-year Treasury rate and core PCE inflation. The results are reported in
the top line of Table 1. I then use these estimates to form a prior distribution
which I combine with the likelihood generated by the measurement equations
(23). I put weak priors on the risk-aversion parameter a, which is not identi-
fied from the first-stage estimation. All of the parameters were then estimated
using 50,000 Metropolis-Hastings draws from the posterior distribution, with a
burn-in sample of 10,000 discarded. Because the forward guidance issued by
the Federal Reserve after the short rate hit the ZLB affected expectations of the
path of rates in an uncertain way, I exclude this period from the sample and
use only the data from 1971 —2008.

4.3 Results

4.3.1 Model fit

The parameter estimates (means and standard deviations of the posterior dis-
tributions) over the 1971 —2008 period are shown in the second row of Table
1. Since φ2 > 0, inflation is correlated with the short rate. In addition, the
variance of inflation varies significantly with its level (ρ1 > 0). This implies a
time-varying inflation risk for all bonds. However, since inflation itself is not
highly persistent (γ1 = 0.71), this risk is greatest for short- and medium-term
securities, adding curvature to the yield curve.
Table 2 reports various statistics summarizing where the model succeeds and

fails in fitting the data, when evaluated at the posterior mode. I assess the fit
over spot yields (which were used in the estimation), forward rates, and excess
returns. The one-year forward rate ending n years ahead is calculated from
bond prices, in both the model and the data, as fn = log (pn−1t/pnt). Excess
returns are computed annually as exretnt = log (pn−1t/pnt−1) − R1t−1,t. (To
avoid overlapping data, excess returns are only calculated using the December
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data in each year.) I report statistics for 5-, 10-, and 15-year bonds over the
entire sample and for 30-year bonds over the post-1985 sample when these data
are available. Since the 30-year bonds were not used in the estimation, they
provide a sort of out-of-sample check on the results.
Given the tight structural restrictions of the model and the relatively par-

simonious parameterization, we would not expect it to fit the data as well as,
say, a reduced-form multifactor affi ne model. Nonetheless, it generally does
well, coming close to matching most of the first and second moments of yields
within-sample. It predicts a bit too little volatility and a bit too much corre-
lation of longer-term yields with the short rate. However, the model explains
about 90% of the variation in yields of up to 15 years, and it even explains 73%
of the variation in the out-of-sample 30-year yield. Perhaps most remarkably,
the model generally matches the features of excess bond returns through the
15-year maturity, with R2s of 0.33 to 0.63. Although it misses substantially on
the overall features of the 30-year bond returns, it still manages to explain 14%
of their variation as well.

4.3.2 Impulse-response functions

Figure 7 examines the effects of shocks in the model. I consider one-standard-
deviation shocks in a direction that leads to positive yield responses. Since
the model is nonlinear, initial conditions matter, and I consider responses both
at the sample mean (left column) and at a set of values that reflect conditions
during the LSAP period (right column); specifically, the latter is characterized
by r0 = 0.003, π0 = 0.014, and z0 = 2.8.
Roughly speaking, short-rate shocks and inflation shocks have similar effects

on long-term yields. Short-rate shocks have larger initial impact, but they die
out rather quickly. The inflation shocks have more-persistent effects on short
rates and also increase inflation uncertainty, both of which serve to amplify
their impact on the long end of the curve. The dynamics of the system impart
a hump shape to the short-rate response to inflation shocks over time, and
this is reflected in the shape of the yield curve reaction to such shocks across
maturities. There is not much qualitative difference between the responses at
the steady state and during the LSAP period.
A shock to average duration has almost the opposite effect across maturities

as a shock to the other variables: short rates do not move at all, and 30-year
yields move by 15 to 20 basis points. The initial response is qualitatively similar
to the comparative-statics exercises depicted in Figures 3 and 6. In the dynamic
model here, these responses decay over time, as the shock to zt dies out. The
responses to duration shocks are about one-third smaller near the ZLB than at
the sample mean, again reflecting the lower volatility of interest rates in that
state of the world. Having stochastic supply in the model adds a source of
variation to longer-term interest rates and thus, all else equal, increases their
volatility. Nonetheless, as the figures suggest, the effect of the typical duration
shock on, say, the 10-year yield is only about one-tenth of the effect of the
typical short-rate shock. Thus, at least in this model, duration shocks account
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for only a modest fraction of the overall variation in longer-term yields.

4.3.3 Term premium decomposition

The top panel of Figure 8 shows how the model decomposes the actual time
series of ten-year yields into an expectations component, a term premium, and
a model-error term. (Since only the period 1971 —2008 was used in the estima-
tion, the last four years in the figure are out-of-sample estimates.) The expec-
tations component is calculated as the value of the ten-year yield that would be
implied by the model at each point in time if a were equal to zero. The term
premium is then just the difference between the model-implied yield on each
date and the expectations component. As noted above, the model generally
tracks the behavior of longer-term interest rates well over this time. The most
notable exceptions are the early 1980s, during the Volcker disinflation when the
market-perceived inflation risk may have been higher than the level captured
by the model, and the period from about 2005 — 2007, corresponding to the
so-called “conundrum”in long-term interest rates (see Gurkaynak and Wright,
2012). The latter is a well known anomaly in the yield curve that is not likely to
be reproduced by the factors considered explicitly here. However, one possible
explanation is that a large quantity of foreign investment increased the demand
for longer-term Treasuries– the “global savings glut” introduced by Chairman
Bernanke. Conceivably, this type of mechanism could be incorporated into the
portfolio-balance model, perhaps by adding exogenous fluctuaitons in demand
from preferred-habitat agents, similar to the model considered in Appendix A.
The second panel shows the term premium. In broad strokes, it follows

a trajectory that is similar to the term premium produced by reduced-form
models, such as Kim and Wright (2005), rising through the 1970s and early
1980s, and falling since the late 1980s. (Rudebusch et al., 2007, estimate the
Kim-Wright term premium for a sample that covers this entire period.) Because
of nonlinearities, the decomposition of the term premium into its structural
contributing factors is not uniquely defined. However, to get a sense of the
relative contributions, I calculate counterfactual yields holding zt and πt equal
to their sample means in all periods and under the assumption that investors
know that they will always be equal to these values. The latter assumption
serves to eliminate the contribution of the uncertainty about each variable to the
term premium. A non-trivial fraction of the movement in the term premium
since the late 1990s is attributed to the reduced interest rate risk associated
with the short rate approaching the ZLB. This can be seen by the dashed line
in the middle panel, which isolates the contribution of the short rate to the
term premium by setting both duration and inflation to their sample averages.
It is also clear from this figure that these two factors have jointly contributed
to significant variation in the term premium relative to what would have been
implied by variation in the short rate alone.
The bottom panel shows the contributions of inflation and Treasury supply

to the term premium, measured by subtracting the counterfactual yield in which
both series are held constant from the counterfactual yield in which only one or
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the other is held constant. Overall, fluctuations in inflation are estimated to
have moved term premiums within a range of about 100 basis points over the
course of the sample. Consistent with previous research (e.g., Campbell et al.,
2009), these fluctuations have mostly been in the form of a downward trajectory
since the early 1980s. On the other hand, the Treasury supply distribution
shifted significantly to longer maturities during the period from about 1975 to
1985, and the model suggests that this resulted in an upward movement in term
premiums of about 150 basis points. Since the 1980s, supply-related movements
have been relatively small because shifts in Treasury supply itself have been
small. Broadly speaking, the results are consistent with the finding of Li and
Wei (2012) that measures of Treasury supply do affect term premiums over
time. The net result of all of these effects, returning to the middle panel, has
been an increase in the overall term premium from just over 100 basis points
at the beginning of the sample to a peak of almost 300 basis points around
1990, followed by a decline to near its original levels by the end of the sample.
The early run-up was due primarily to an increase in duration risk, while the
subsequent decline was due to a decrease in inflation risk, together with the
approach of the ZLB.
Table 3 summarizes these findings by comparing the monthly change in the

model-implied ten-year yield and term premium to the changes that would have
occurred in the counterfactual scenarios. By this measure, inflation accounts
for 39% of the overall variance in term premiums and fluctuations in Treasury
supply account for 70%. The two factors are correlated in the sample, so exclud-
ing them both reduces the volatility of the term premium by 94%. Although
these fractions are large, it is important to bear in mind that most interest-rate
fluctuations in the model are not due to term premiums but rather to expected
short rates. Indeed, as shown in the top row of the Table, holding both inflation
and average duration at their sample averages reduces the variance of 10-year
yield changes by just 6%.

5 Assessment of the LSAP programs

In this section, I consider the Federal Reserve’s LSAP programs using the three-
factor model presented above. The relevant aspects of the programs are sum-
marized in Table 4. A large component of the Federal Reserve’s purchases
consisted of agency mortgage-backed securities. Throughout the paper I have
ignored agency mortgage-backed securities when calculating the duration of gov-
ernment liabilities, but this exclusion is likely inappropriate because these secu-
rities have typically been perceived to carry an implicit government guarantee.
Two technical measurement problems arise when trying to extend the analysis
to agency MBS. The first is that comprehensive data on the maturity structure
of outstanding MBS are not available. The second is that, unlike the case of
zero-coupon Treasuries, duration for MBS depends on economic conditions– in
particular, it depends on the level of interest rates through the negative con-

19



vexity induced by the prepayment option. However, according to the Barclays
MBS index, the average duration of MBS since 1989 is about three years, only
slightly lower than that of Treasury debt. (See Hanson, 2012.) In performing
the calculations below, I continue to use the approximation of an exponential
distribution for the duration distribution. Moreover, I assume that asset pur-
chases did not materially change the average duration of MBS outstanding, but
I do incorporate the amount of MBS outstanding, so that Fed purchases swap
their duration for zero-duration reserves.
The net effect of the LSAP programs, as of December 2012, was to reduce the

outstanding supply of Treasury and MBS securities by $2 trillion and increase
reserves by a similar amount. Moreover, the Treasury securities removed from
the market were, after the duration twist induced by the Maturity Extension
Program (MEP), almost all of maturity greater than five years. Consequently,
the average duration of Treasury securities in the hands of the public (not count-
ing reserves) was about 0.5 years lower after the completion of the programs than
it otherwise would have been. Taking all of these facts together, we can esti-
mate how investors’duration changed as a result of the programs. Specifically,
as of Q4 2008, Treasury debt held by the U.S. public was $5.3 trillion, agency
MBS was $5.0 trillion, and the monetary base was $1.4 trillion. The average
duration of Treasuries (excluding the monetary base) in the hands of the public
was 3.1 years as of the beginning of the program. Therefore, assuming that
MBS have an average duration of three years (and again counting the base as
zero duration), the weighted average of Treasuries, MBS, and the monetary base
in the hands of the public was 2.7 years when the first LSAP was announced.
Holding all else constant, this value would have fallen to 2.0 years as a result of
the programs.
The final column of the table presents the range of values for the empirical

effects of the LSAPs on the ten-year term premium, culled from the literature
that has examined this question. In particular, this range draws on estimates
from Gagnon et al. (2010), Krishnamurthy and Vissing-Jorgensen (2011), Ihrig
et al (2012), D’Amico et al. (2012), and Rosa (2013). (In some cases, additional
minor calculations were required to make the results comparable.) Of course, all
of these estimates are subject to a high degree of uncertainty surrounding both
parameter values and specification. Furthermore, since most of these papers
employ an event-study methodology using program-announcement dates, the
estimates may be understated. Nonetheless, they provide a rough guide to
what we should expect for the combined effects of the programs– likely on the
order of 100 to 250 basis points altogether. To be clear, this is (according to
the authors of the studies) only the effect on the term premium, controlling for
changes in expectations of the short rate, and it only reflects the initial impact
of the programs, ignoring any subsequent dynamic effects.
How do these estimates compare to the results of the portfolio-balance

model? The black line in Figure 9 shows the effect of removing 0.7 years
of duration from the hands of investors, starting from a level of duration that
is equal to what was observed prior to the LSAP’s introduction (2.7 years) and
a configuration of short rates and inflation that approximates the situation on
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average since that time. Specifically, inflation is set at a level of 1.4 percent (its
average over the period 2009 —2012), and the short-term interest rate is taken
to be near the zero lower bound with two years of forward guidance in place.
Although the market’s perception of the length of time that the ZLB would
bind surely fluctuated over this period, the assumption of two years is likely
close to the average that prevailed, perhaps erring on the conservative side (see
Femia et al., 2013). As a reality check, the first row of Table 5 shows that the
slope of the yield curve produced by the model under these assumptions over
the LSAP period was reasonably close to the average slope of the yield curve in
the data during this time. (Recall that this part of the sample was not used
in the estimation, and that the model was estimated under the assumption of
no forward guidance.) The effect of the LSAPs on the ten-year yield of the
LSAP shock in this environment is a mere 18 basis points. This is the initial
impact– given the estimated dynamics of zt, the effect would decay to zero over
time, similarly to the response shown in Figure 7.
The other lines in the figure check the robustness of this result to the most

likely sources of measurement error. First, although the two-year period as-
sumed for the forward guidance may be a reasonable approximation in terms
of the time interval involved, the assumption that the Fed committed to the
level of the short rate with absolute certainty for this entire time could be too
strong, given that the forward guidance issued by the FOMC has always left
open the possibility that rates could rise sooner than expected if economic con-
ditions warranted. Indeed, empirical measures of short-term uncertainty about
the short rate have consistently remained significantly above zero while forward
guidance has been in place. The green line examines the sensitivity in this
dimension by instead imposing that investors believe that the ZLB will bind
with certainty for only one year following the LSAP shock. This has the effect
of raising the standard deviation of the one-year-ahead short rate from zero
to 1.2%, and it brings the 10-year slope into even closer alignment with the
data. However, it increases the effect of the LSAPs only to 24 basis points.
Second, given that the calculation of the size of the 0.7-year duration shock was
somewhat back-of-the-envelope, one might worry that it is less than the true
amount of duration removed by the LSAPs, perhaps understating the duration
outstanding at the beginning of the programs and overstating the amount left
at the end. The orange line shows the effect of a shock that is twice as large
as the baseline, going from an average duration of 3.05 years to 1.65 years; the
effect on the ten-year yield is about double the previous estimate, but it is still
only about a third of the low end of the empirical range of LSAP effects.
One might also object that, during much of the LSAP period, the average

level of risk aversion was higher than usual. The second row of Table 5 shows
the effect of doubling the estimated risk-aversion coeffi cient to a value of 25.4.
The impact of the LSAP shock in this case is still just 29 basis points under the
assumption of two-year forward guidance. This value rises to 60 basis points–
perhaps half of the empirical value– if one assumes shorter forward guidance in
addition to higher risk aversion, but that scenario does not seem likely to be
apposite, as it implies a counterfactually steep slope for the yield curve (420 bp,
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rather than 268 bp, on average).

6 Conclusion

This paper has presented a new method for studying the term structure of in-
terest rates and, in particular, the ways in which the term structure is affected
by supply fluctuations. The type of model considered is a rational-expectations
version of portfolio-balance models that have been in use, with varying degrees
of formality, for decades. It may be viewed as a generalization of the preferred-
habitat model of Vayanos and Vila (2009), with investors that potentially have
a broader class of objective functions and in which nonlinearities may be impor-
tant. It is hoped that this approach may be of use in studying other asset-pricing
phenomena as well.
One feature of the particular set of models to which I have applied the ap-

proach is that they likely overstate the effect that supply fluctuations could have
through a duration channel because they assume that the investor portfolios con-
sist only of Treasury bonds and that they cannot adjust their consumption or
other behavior to offset the utility effects of losses of wealth. Pursuing these
extensions is left for future research. The reasonably strong fit of the model con-
sidered here suggests that the extent to which it exaggerates portfolio-balance
effects may not be large, although it does call for some caution when thinking
about results like the term-premium decomposition. However, the upper-bound
nature of the models can be viewed as an advantage when trying to gauge
the likely effects of asset-purchase programs, since even under their potentially
strong assumptions the models suggest that those effects are fairly small. I
interpret these results, not as evidence that the LSAPs were ineffective, but
as evidence that they probably had their effects primarily through mechanisms
other than the removal of duration risk. It seems possible that phenomena not
easily captured by a no-arbitrage model, such as market dislocations, liquidity
shocks, and capital constraints, were important during and after the financial
crisis and that LSAPs had additional effects through those channels. This read-
ing is broadly consistent with the empirical conclusions of Krishnamurthy and
Vissing-Jorgensen (2011), Cahill et al. (2013), and D’Amico and King (2013).
More structural modeling of the behavior driving such scarcity effects is needed
to determine whether they would significantly alter the results presented above.
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Appendices

A. Nonpecuniary Returns

Imperfect substitutability
In this appendix, I consider ways of introducing imperfect substitutability

among assets by allowing them to have "convenience yields." Such a formulation
could be motivated, for example, by a planning horizon longer than one period,
by a desire to match long-duration liabilities, or by supposing that short-term
assets provide liquidity services. (Cox et al., 1981, Krishnamurthy and Vissing-
Jorgenson, 2012, and Greenwood et al., 2013, provide models in which this can
occur in different forms.) This is potentially important because these phenom-
ena can create demand for assets in excess of what would be implied by their
risk and return characteristics under no-arbitrage. Consequently they can in-
teract with the portfolio-balance effects developed in the main text in interesting
ways. I illustrate these effects in the one-factor version of the model, in which
the supply distribution is static, although it is straightforward to include them
in multifactor models as well.
To begin, re-define the return on asset n as

Rnt,t+1 =
qnt+1 + bn (st,pt)

pnt

where bn(.) is a security-specific benefit that may depend on the state of the
economy and on the entire vector of security prices. Though a variety of
possibilities exist for bn, I consider two that seem particularly relevant. First,
it may be that investors receive a benefit from holding securities of particular
maturities. In particular, suppose that the return on an individual security is
given not just by its price appreciation but also by an unobserved benefit that
depends on its maturity. For parsimony, I assume that this dependence is linear
in the end-of-period maturity, n-1:

bmaturityn = b(n− 1)

for some parameter b, which could take either sign depending on whether ben-
efits are greater for short- or long-term securities. Second, as suggested by
Hanson and Stein (2012), investors may have preferences over yields, in addi-
tion to preferences over returns. (They point to this mechanism, reminiscent of
“reach for yield”-type behavior, as a potential explanation for the excess volatil-
ity of longer-term yields over the business cycle.) To incorporate this idea, I
allow investors to receive benefits on bonds based on their current yields, in
excess of the short-term yield:

byieldn = c
(
p
−1/n
nt − exp [−rt]

)
where c > 0 is a parameter reflecting the additional benefit generated by the
current yield.
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I combine the yield and maturity preference specifications into the single
convenience-yield function bn = pnt(b

maturity
n + byieldn ), where the multiplication

by the price of bond n imposes that the benefit is proportional to the market
value, rather than the face value, of the security held in the portfolio at time t.
This gives the following specification for returns:

Rnt+1 =
pn−1t+1
pnt

+ b(n− 1) + c
(
p
−1/n
nt − exp [−rt]

)
For illustration in the one-factor mean-variance model, I calibrate the three

parameters a, b, and c to match the average 15-year slope of the yield curve, the
average curvature of the yield curve (as measured by the difference between the
1-15 and 15-30-year slopes over the more limited sample for which the 30-year
yield is available), and the sample variance of the 15-year yield. This gives
a = 29.1, b = 0.0056, and c = 0.97.
Figure A1 reconsiders the LSAP-type comparative statics using the model

with the imperfect-substitutability terms as calibrated above. I examine both
the case in which the short rate is at its sample-average value (top) and in which
it is at the ZLB with one year of forward guidance (bottom). The solid lines
show the effect on the yield curve of reducing z by 0.7 years in the baseline model
without imperfect substitutability (the same as in Figures 3 and 6). The dashed
lines show the corresponding yield curves using the imperfect-substitutability
model. The inclusion of these terms increases the curvature of the yield curve in
both panels. It also increases the sensitivity of long-term yields to the level of
the short rate, as can be seen by comparing the blue lines in the bottom panel.
The sensitivity of yields to the supply distribution is also two to three times
larger under this calibration than in the model with b = c = 0.
This result must be interpreted with caution, however. Almost the entirety

of the difference between the effect of the LSAP in this model and the baseline
is due to the much larger value of risk aversion used here, not to the effects of
the convenience-yield terms themselves. If risk aversion is set to its baseline
value of a = 8, maintaining the above values of b and c, the LSAP effect is
almost identical to the effect in the model in which b and c were zero. Thus,
the primary effect of the convenience yield is to change the average shape of
the yield curve and its response to short-rate shocks, without having any major
consequences for its sensitivity to the supply distribution. In the three-factor
model of Section 5, where inflation and supply dynamics naturally contribute
to the curvature and volatility of longer-term rates, the convenience-yield terms
generally add little, and estimates of that model including those terms turn out
to produce negligible values for b and c.

Preferred habitat
In the models considered in the text, the supply of debt that must be held

by investors is exogenous. More generally, this distribution itself could depend
on interest rates, as in the model of Vayanos and Vila (2009). Apart from
its affi ne structure, the essential feature of Vayanos-Vila that differs from the
model considered above is that investors (“arbitraguers” in their terminology)
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face an elastic supply curve at each maturity. This supply curve is assumed
to arise from the presence of preferred habitat agents, each of whom deals in
debt of only one maturity. Specifically, for each bond, preferred-habitat agents
demand a (market-value) quantity that is a function h of maturity and price:

pntξnt = h (n, pnt) (A1)

where ξnt is the par value demanded. The par value left in the hands of the
investors is simply xnt−ξnt, up to the constraints that no one can hold negative
quantities. The models in the text effectively assumed h(n, pnt) = 0 for all n.
Equation (A1) can be substituted directly into (4) to give the return on the
investors’portfolio:

Rwt =

N∑
n=1

xnt(pnt)pn−1t+1

N∑
n=1

xnt(pnt)pnt

where

xnt(pnt) ≡ min

[
xnt,max

[
0, xnt −

h (n, pnt)

pnt

]]
For a given demand function h, this model can be solved numerically using the
solution algorithm described in the text.

B. Solution Algorithm
Models satisfying the conditions discussed in Section 2 can be solved nu-

merically for the time-t vector of asset prices pt using the following iterative,
discrete—state approximation method. I first make explicit that prices and
quantities depend on the state of the economy. Namely, let xn(st) describe
how the quantity of asset n depends on the state. Let st be Markov on the
support S with transition density τ(st+1|st). It is assumed that the form of
the pricing kernel in equation (3), the laws of motion for the states, and the
dependence of quantities on the states are known– that is, we (and investors)
have knowledge of the functions τ(st+1|st), M(st, st+1, R

w
t,t+1), and xn(st). We

seek a vector-valued function p(st) = ( p1(st) ... pN (st) ) that describes
how all asset prices depend on st.

The price of asset n is given by

pn(st) =

∫
S

τ(s′|st)M(st, s
′, Rwt,t+1)qn(st+1)ds

′ (B1)

where

qn(st) ≡
{
pn−1(st) for n > 1

1 for n = 1

and the integral is taken over all dimensions of the state. (The extension to
cases with nonpecuniary returns is straightforward.) Given a distribution for
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Rwt+1, this is a system of linear Fredholm equations of the first kind, which in
principle can be solved by quadrature in one step. However, the fact that Rwt,t+1
is defined as in (4) requires us to iterate by, first, solving (B1) using a given
distribution of Rwt,t+1; second, given the resulting pricing fuctions finding the
updated distribution of Rwt,t+1; and repeating these steps to convergence.

Specifically, let pid (st) be a proposal for the pricing function on a discretiza-
tion of the state space D = (d1, . . . ,dG) ∈ SG, where G is the number of nodes
and i = 0, . . . , I indexes iterations, and let qid be the corresponding discritiz-
tion of q(st). Suppose that the nodes are uniformly distributed over the state
space, so that the conditional transition probability from node j to node h can
be approximated by

τ̂(dh|dj) ≡ τ(dh|dj)
[
G∑
g=1

τ(dg|dj)
]−1

pid and τ̂ are used to generate a proposal for the joint distribution of period
t+1 states and prices. That distribution, in turn, generates an updated pricing
function pi+1d (st) through the analogue to equation (B1)– that is, by solving

pi+1dn (dj) =

G∑
g=1

τ̂(dg|dj)M
(

dj ,dg,
x (dj)

′
qid (dj)

x (dj)
′
pid (dj)

)
pi+1dn−1(dg) (B2)

for the vector pi+1d (dj) at each node j = 1, ..., G.
This procedure converges in G and I, so long as the moments of the pricing

kernel are well behaved. In particular, suffi cient conditions for equation (B2)
to constitute a contraction mapping on pdn are that (i) the short-term interest
rate is always non-negative and (ii)M(.) is linear in Rwt . The Banach Theorem
then guarantees for any given discretization D, pid (dj) −→ pd (dj) ∀ dj ∈ D,
where pd is the (unique) pricing function that obtains if τ̂ is the data-generating
process. But continuity of τ ensures that, for any node j,

lim
G−→∞

pdn(dj) = Et

[
pn−1 (st+1)M

(
dj , st+1,

x (dj)
′
qid (st+1)

x (dj)
′
pid (dj)

)]
i.e., in the limit, the pricing function solves the no-arbitrage condition (1).
Finally, by construction, if the algorithm converges, any point of convergence

is a rational-expectations equilibrium. This follows immediately, since conver-
gence is defined as the fixed point at which the joint distribution of pt+1 and
Mt+1 is consistent with the vector pt, for each point in the state space.
It is important to note that, although the algorithm only solves for the

vector of prices at G points in the state space, once these solutions are in hand
it is straightforward to calculate equilibrium prices at any point through the
Nystrom extension. In particular, take an arbitrary state value st. For G large
enough, we have

pn (st) ≈
[
G∑
g=1

τ(dg|st)M
(

st,dg,
x (st)

′
qid (dg)

x (st)
′
pid (st)

)
pn−1(dg)

][
G∑
g=1

τ(dg|st)
]−1
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Once the algorithm has converged, the quantities on the right-hand side are all
known. Thus, securities can be priced in at any point in S.
Figure B1 displays some results on the convergence of the solution algorithm

for the one-factor model discussed in Section 3. The top panel shows the
computed 5-, 10-, 15-, and 30-year yields, shown for a short rate at its average
value of 5.8%, across the first 50 iterations (i = 1, . . . 50). The algorithm is
initialized at a price vector p0d (dj) = (1, . . . , 1) for all values of dj and uses
G = 65 nodes across the state space. It is evident from this figure that, for each
maturity n, the solution converges very quickly once i > n.
The middle panel shows convergence in the number of gridpoints by display-

ing the computed yield curve (after I = 50 iterations), again using rt = 0.058
for illustration. Yield curves are shown for G = 5, 9, 17, 33, and 65, in each
case spaced equally across possible values of p1t. The space is assumed bounded
between 0 and 0.80, so this partitioning corresponds roughly to increments of
between 38 basis points and 5 percentage points. While 5 nodes is clearly too
few to achieve convergence, the solutions using 17 or more nodes are indistin-
guishable from each other.
For brevity, these results were shown for the average value of the short

rate. Similar convergence results obtain for other points in the state space,
although solutions will not be accurate near the bounds if the underlying state
process itself is not actually bounded. For example, in the above case, we
would not expect the procedure to generate correct solutions near p1t = 0.80
(corresponding to a risk-free return of 25%). However, so long as the bound on
the state space is imposed far enough away from the values of the states that
are actually realized in practice, this limitation has a negligible effect on the
results. The bottom panel of the figure illustrates this claim by comparing the
yield curve computed above with the yield curve computed when the grid for p1t
is extended over the entire range (0, 1), again at the average value of the short
rate. (The latter computation used G = 100.) The two curves are virtually
identical, differing by less than 1 basis point across maturities.
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Figure 1.  Characteristics of U.S. government liabilities in public hands 

 

A.  Average duration 

 

B.  Percentage with duration < 5 years 

 

 

Notes:  Includes coupon notes, bonds, and bills issued by the U.S. Treasury, less the amount held in the Federal 

Reserve’s SOMA portfolio, plus reserves and currency in circulation, which are assumed to have a duration of zero.  

Sources: CRSP, Federal Reserve. 
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Figure 2.  Risk prices in the one-factor model 

 

Note: The figure shows the price of short-rate risk (expected excess returns divided by their standard deviation) in 

the one-factor model for various values of aggregate duration (z).  The black line corresponds to a model in which 

the short rate follows a simple AR(1) process.  The blue line corresponds to a model in which that process is 

truncated at zero. 
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Figure 3.  An LSAP-type shift in the one-factor model 

Duration distribution of outstanding debt 

 
 

Yield curve 

 
 

Return Volatility (One-Year) 

 
Notes: The figure shows the effect of moving from an average duration of 2.7 to 2.0 years in the one-factor model, 

evaluated at a short rate of 5.8% (the sample average). 
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Figure 4.  Effect of the maturity-distribution shape in the one-factor model 

Duration distribution of outstanding debt 

 

Yield curve 

 

Notes: The top panel shows two possible distributions for the maturity of outstanding Treasury debt, one 

exponential and one nearly degenerate, both with means of 2.7 years.  The bottom panel shows the corresponding 

yield curves generated by the one-factor model when the short rate is at its average value of 5.8%.  In both cases, 

the risk-aversion coefficient is calibrated to match the average value of the 15-year yield. 
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Figure 5.  Estimated short-rate processes 

 

 
 

Notes:  The figure shows the features of the conditional distribution of r
f
t+1, as a function of rt

f
 near the ZLB, given 

by the truncated autoregressive process described by equations (XX) and (XX).  Frequency is annual. 
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Figure 6.  An LSAP-type shift in the one-factor model at the zero lower bound 

Yield curve 

 
 

Return Volatility (One-Year) 

 
Notes: The figure shows the effect of moving from an average duration of 2.7 years (blue) to 2.0 years (red) in the 

one-factor model, evaluated at a short rate of 0%.  The solid lines represent the case in which the short rate is 

expected to evolve according to its usual truncated-AR(1) process.  The dashed lines (“forward guidance”) 

represent the case in which the short rate is anticipated to remain at 0% with certainty for one year and only then to 

follow its usual truncated-AR(1) process. 
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Figure 7.  Impulse-response functions for the estimated three-factor model 

At sample means     At LSAP-period values 

 

Response to short-rate shock 

  

Response to inflation shock 

    

Response to supply shock 

    

Notes: The figures show responses of the yield curve to one standard deviation positive shocks to the short-term 

interest rate, core PCE inflation, and average Treasury duration in the three-factor model, initialized at the 1971 - 

2008 average values of the state variables (left panels) and at a set of state values representative of the 2008-2012 

period (right panels).  Maturities are plotted along the upper-left axis, and the lower-left axis represents calendar 

time (in years) after the shock. 
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Figure 8.  Decomposition of the 10-year yield in the three-factor model 

 

Yield components 

 

Term premium components 

 

 
Notes: The model is estimated over the period Dec. 1971 – Dec. 2008.  The term premium is calculated as the 

difference between the model-implied rate and the expectations component.  Term premium shares are calculated as 

the difference between the term premium implied in the full model and that implied in counterfactual models in 

which inflation or Treasury supply are always equal to their sample-average values with certainty.  The “short-rate 

contribution” to the term premium is calculated holding both Treasury supply and inflation equal to their average. 
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Figure 9.  The effect of the LSAPs in the three-factor model 

 

 
 

Notes: The black line shows the initial impact of a duration shock on the scale of the LSAP programs in the 

estimated three-factor model, evaluated at initial values approximating conditions experienced during the LSAP 

period, assuming that forward guidance leads market participants to expect short rates to remain at zero for two 

years. The green line shows the effect of the same shock when the forward guidance is for one year, rather than two.  

The orange line shows the effect of a duration shock of double the size. 
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Figure A1.  Supply effects in the model with convenience yield 

 
At the sample mean 

 

 
 

At the steady state / ZLB 

 

 
 

Notes: The figures shows the effect of moving from an average duration of 2.7 years (blue) to 2.0 years (red) in both 

the baseline one-factor model (solid lines) and the model including the convenience-yield term (dashed lines).  The 

top panel shows the case in which the short rate is at its sample mean of 5.8%.  Bottom panels shows the case in 

which the short rate is at 0% and is anticipated to remain there with certainty for one year and then to follow its 

usual truncated-AR(1) process.  Parameters are calibrated to the sample moments of yields, as described in the text. 
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Figure B1.  Solution convergence in the one-factor model 

 

 

 

Notes:  The graphs show how the solution algorithm converges in the number of iterations (top), number of nodes in 

the grid (middle), and truncation point of the state space (bottom).  All calculations are illustrated at the average 

value of the short rate. 
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Table 1.  Parameter estimates for the three-factor model 

 0 1 2 log sr 0 1 log 0 1 a 

Prior -0.005 

(0.009) 

0.8 

(0.1) 

0.4 

(0.2) 

-4.2 

(0.4) 

0.003 

(0.005) 

0.9 

(0.2) 

-20 

(21) 

0.003 

(0.002) 

12 

(5) 

Posterior 0.0005 

(0.0010) 

0.90 

(0.01) 

0.19 

(0.03) 

-4.0 

(0.05) 

0.0051 

(0.0015) 

0.71 

(0.05) 

-12.3 

(2.1) 

0.0023 

(0.0007) 

12.8 

(1.0) 

Notes: The table reports parameter estimate—means with standard deviations in parentheses—for the model 

in equations (33) through (35).  The prior distribution is jointly normal and is based on maximum-likelihood 

estimation of the system using annual data on the one-year Treasury rate and core PCE inflation. The 

reported posterior values are based on 50,000 Metropolis draws, using monthly data on 5-, 10-, and 15-year 

yields from 1971 – 2008. 

 

Table 2.  Comparison of the three-factor model to the data. 

A. Yields (%) 

  

1yr 5yr 10yr 15yr 

30yr 

(beg. 12/85) 

Data 

Mean  6.4 7.1 7.5 7.7 6.6 

Std. Dev.  3.0 2.6 2.4 2.3 1.5 

1-year autocor. 0.81 0.87 0.88 0.88 0.91 

Corr w/short rate 1 0.96 0.92 0.89 0.71 

Model 

Mean 6.4 7.0 7.4 7.6 7.0 

Std. Dev. 3.0 2.7 2.3 2.1 1.3 

1-year autocor. 0.81 0.82 0.83 0.84 0.87 

Corr w/short rate 1 1.00 0.99 0.97 0.88 

R
2 

-- 0.92 0.87 0.84 0.73 

 

B. Forward rates (%) 

  

1yr 5yr 10yr 15yr 

30yr 

(beg. 12/85) 

Data 

Mean  6.4 7.5 8.0 8.1 6.0 

Std. Dev.  3.0 2.4 2.1 2.2 1.9 

1-year autocor. 0.81 0.88 0.87 0.88 0.83 

Corr w/short rate 1 0.88 0.82 0.81 0.61 

Model 

Mean 6.4 7.5 8.0 8.0 6.9 

Std. Dev. 3.0 2.4 1.8 1.4 1.1 

1-year autocor. 0.81 0.83 0.85 0.86 0.88 

Corr w/short rate 1 0.98 0.94 0.87 0.69 

R
2 

-- 0.80 0.77 0.68 0.54 

See next page for notes. 
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Table 2 continued. 

C. Annual excess returns (%) 

  

1yr 5yr 10yr 15yr 

30yr 

(beg. 12/85) 

Data 

Mean  0 2.1 3.4 4.4 15.3 

Std. Dev.  0 6.5 12.4 17.9 29.8 

1-year autocor. -- 0.04 -0.09 -0.12 -0.58 

Corr w/short rate 

(end of period) -- 
-0.48 -0.45 -0.40 -0.20 

Model 

Mean 0 1.7 2.9 3.6 2.7 

Std. Dev. 0 6.3 12.2 16.4 5.6 

1-year autocor. -- 0.20 0.19 0.18 0.01 

Corr w/short rate 

(end of period) -- 
-0.44 -0.43 -0.43 -0.52 

R
2 

-- 0.63 0.40 0.33 0.14 

 

Notes:  Data are monthly averages of daily values, Dec. 1971 – Dec. 2008, except for 30-year yield.  Model results 

are generated using the mean values of the parameters reported in Table 1, which were estimated over the 5-, 10-, 

and 15-year spot yields.  Reported forward rates are one-year rates ending 1, 5, 10, 15, and 30 years ahead.  Excess 

returns are computed on non-overlapping samples, December to December of each year, and are calculated relative 

to the initial one-year yield. Excess returns in the data are calculated from the Gurkaynak et al. (2007) zero-coupon 

yields.  Shading indicates model output that exactly matches the data by construction. 

 

 

 

 

 

Table 3.  Contributions to the ten-year yield in the three-factor model 

 Inflation factor Supply factor Both factors 

Yield  0.07  0.06 0.06 

Term premium 0.39 0.70 0.94 

Notes: Table reports the percentage by which the total variance of the ten-year yield or term 

premium falls when the indicated factors are held at their sample-mean values, and investors 

price these levels in with certainty.  Variances are computed over monthly first differences, 

1971 – 2012. 
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Table 4.  Summary of Federal Reserve asset-purchase programs 

 

Dates 

Net quantity of 

Treasuries 

purchased 

($bil) 

Net quantity 

of MBS 

purchased 

($bil) 

Net quantity 

of reserves 

created 

($bil) 

Assumed change 

in average 

Treasury duration 

outstanding 

Empirical 

effect on ten-

year term 

premium 

LSAP I 
Dec. 2008 – 

May 2010 
$300 $941 $1,318 0 40-100 bp 

MBS 

reinvestment 

Aug. 2010 – 

Oct. 2011 
$285 $0 $285 0 10-25 bp 

LSAP II 
Nov. 2010 – 

July 2011 
$600 $0 $600 0 15-55 bp 

MEP 
Oct. 2011 – 

Dec. 2012 
$0 $0 $0 -0.5 30-65 bp 

Total  $1,185 $941 $2,203 -0.5  95-245 bp 

Notes: All quantities are net of redemptions and principal payments through December 2012.  The assumed duration 

change is only that in Treasury securities (i.e., excluding agency debt, MBS, and the monetary base).  The empirical 

effect of each program on the ten-year nominal Treasury yield is taken from the literature discussed in Section 6 of the 

text. 

 

 

 

 

 

Table 5.  Effects of alternative parameter assumptions on the LSAP impact 

 

Effect of LSAPs on 10y 

term premium 

(bp) 

Ave. 10y slope, 

Dec. 2008 – Dec. 2012 

 (bp) 

Data  95 - 245 268 

Parameters Forward guidance   

Estiamted Model 

  a = 12.7 

2 years 18 214 

1 year 24 273 

  a = 25.4 
2 years 46 328 

1 year 60 420 

Notes: The estimated model is the three-factor model described in Section 6 of the text, using data from 1971 – 

2008, with parameters evaluated at the posterior mean.  The LSAP shock is assumed to be a decrease in 

average duration outstanding from 2.7 to 2.0 years.  “Forward guidance” means that investors know that the 

short-term interest rate will be equal to its current value for the indicated time after the shock.   
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