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Introduction

A uni�ed and comprehensive theory for a class of nonlinear time series
models in which the conditional distribution of an observation may be
heavy-tailed and the location and/or scale changes over time.

The de�ning feature of these models is that the dynamics are driven
by the score of the conditional distribution.

When a suitable link function is employed for the dynamic parameter,
analytic expressions may be derived for (unconditional) moments,
autocorrelations and moments of multi-step forecasts.

Furthermore a full asymptotic distributional theory for maximum
likelihood estimators can be obtained, including analytic expressions
for the asymptotic covariance matrix of the estimators.
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Introduction

The class of dynamic conditional score (DCS) models includes

standard linear time series models observed with an error which may
be subject to outliers,

models which capture changing conditional variance, and

models for non-negative variables.

The last two of these are of considerable importance in �nancial
econometrics.

(a) Forecasting volatility - Exponential GARCH (EGARCH)

(b) Duration (time between trades) and volatility as measured by
range and realised volatility - Gamma, Weibull, logistic and
F-distributions with changing scale and exponential link functions,
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Introduction

A guiding principle is signal extraction. When combined with basic ideas
of maximum likelihood estimation, the signal extraction approach leads to
models which, in contrast to many in the literature, are relatively simple in
their form and yield analytic expressions for their principal features.
For estimating location, DCS models are closely related to the unobserved
components (UC) models described in Harvey (1989). Such models can be
handled using state space methods and they are easily accessible using the
STAMP package of Koopman et al (2008).
For estimating scale, the models are close to stochastic volatility (SV)
models, where the variance is treated as an unobserved component. The
close ties with UC and SV models provides insight into the structure of the
DCS models, particularly with respect to modeling trend and seasonality,
and into possible restrictions on the parameters.
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Unobserved component models

A simple Gaussian signal plus noise model is

yt = µt + εt , εt � NID
�
0, σ2ε

�
, t = 1, ...,T

µt+1 = φµt + ηt , ηt � NID(0, σ2η),
where the irregular and level disturbances, εt and ηt , are mutually
independent. The AR parameter is φ, while the signal-noise ratio,
q = σ2η/σ2ε , plays the key role in determining how observations should be
weighted for prediction and signal extraction.
The reduced form (RF) is an ARMA(1,1) process

yt = φyt�1 + ξt � θξt�1, ξt � NID
�
0, σ2

�
,

but with restrictions on θ. For example, when φ = 1, 0 � θ � 1. The
forecasts from the UC model and RF are the same.
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Unobserved component models

The UC model is e¤ectively in state space form (SSF) and, as such, it may
be handled by the Kalman �lter (KF). The parameters φ and q can be
estimated by ML, with the likelihood function constructed from the
one-step ahead prediction errors.
The KF can be expressed as a single equation. Writing this equation
together with an equation for the one-step ahead prediction error, vt , gives
the innovations form (IF) of the KF:

yt = µt jt�1 + vt
µt+1jt = φµt jt�1 + ktvt

The Kalman gain, kt , depends on φ and q.
In the steady-state, kt is constant. Setting it equal to κ and re-arranging
gives the ARMA(1,1) model with ξt = vt and φ� κ = θ.
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Outliers

Suppose noise is from a heavy tailed distribution, such as Student�s t.
Outliers.
The RF is still an ARMA(1,1), but allowing the ξ 0ts to have a heavy-tailed
distribution does not deal with the problem as a large observation becomes
incorporated into the level and takes time to work through the system.
An ARMA models with a heavy-tailed distribution is designed to handle
innovations outliers, as opposed to additive outliers. See the robustness
literature.
But a model-based approach is not only simpler than the usual robust
methods, but is also more amenable to diagnostic checking and
generalization.
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Unobserved component models for non-Gaussian noise

Simulation methods, such as MCMC, provide the basis for a direct attack
on models that are nonlinear and/or non-Gaussian. The aim is to extend
the Kalman �ltering and smoothing algorithms that have proved so
e¤ective in handling linear Gaussian models. Considerable progress has
been made in recent years; see Durbin and Koopman (2001).
But simulation-based estimation can be time-consuming and subject to a
degree of uncertainty.
Also the statistical properties of the estimators are not easy to establish.
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Observation driven model based on the score

The DCS approach begins by writing down the distribution of the t � th
observation, conditional on past observations. Time-varying parameters
are then updated by a suitably de�ned �lter. Such a model is observation
driven, as opposed to a UC model which is parameter driven. ( Cox�s
terminology). In a linear Gaussian UC model, the KF is driven by the one
step-ahead prediction error, vt . The DCS �lter replaces vt in the KF
equation by a variable, ut , that is proportional to the score of the
conditional distribution.
The IF becomes

yt = µt jt�1 + vt , t = 1, ...,T

µt+1jt = φµt jt�1 + κut

where κ is an unknown parameter.
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Why the score ?

If the signal in AR(1)+noise model were �xed, that is φ = 1 and σ2η = 0,
µt+1 = µ, the sample mean, bµ, would satisfy the condition

T

∑
t=1
(yt � bµ) = 0.

The ML estimator is obtained by di¤erentiating the log-likelihood function
with respect to µ and setting the resulting derivative, the score, equal to
zero. When the observations are normal, ML estimator is the same as the
sample mean, the moment estimator.
For a non-Gaussian distribution, the moment estimator and the ML
estimator di¤er. Once the signal in a Gaussian model becomes dynamic,
its estimate can be updated using the KF. With a non-normal distribution
exact updating is no longer possible, but the fact that ML estimation in
the static case sets the score to zero provides the rationale for replacing
the prediction error, which has mean zero, by the score, which for each
individual observation, also has mean zero.
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Why the score ?

The use of the score of the conditional distribution to robustify the KF
was originally proposed by Masreliez (1975). However, it has often been
argued that a crucial assumption made by Masreliez (concerning the
approximate normality of the prior at each time step) is, to quote Schick
and Mitter (1994), �..insu¢ ciently justi�ed and remains controversial.�
Nevertheless, the procedure has been found to perform well both in
simulation studies and with real data.
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Why the score ?

The attraction of treating the score-driven �lter as a model in its own
right is that it becomes possible to derive the asymptotic distribution of
the ML estimator and to generalize in various directions.
The same approach can then be used to model scale, using an exponential
link function, and to model location and scale for non-negative variables.
The justi�cation for the class of DCS models is not that they approximate
corresponding UC models, but rather that their statistical properties are
both comprehensive and straightforward.
An immediate practical advantage is seen from the response of the score
to an outlier.
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Dynamic location model

yt = ω+ µt jt�1 + vt = ω+ µt jt�1 + exp(λ)εt ,

µt+1jt = φµt jt�1 + κut ,

where εt is serially independent, standard t-variate and

ut =

 
1+

(yt � µt jt�1)
2

νe2λ

!�1
vt ,

where vt = yt � µt jt�1 is the prediction error and ϕ = exp(λ) is the
(time-invariant) scale.
Further details in Harvey and Luati (2012).
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Figure: Impact of ut for tν (with a scale of one) for ν = 3 (thick), ν = 10 (thin)
and ν = ∞ (dashed).
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GARCH

GARCH(1,1)

yt = σt jt�1zt , zt v NID (0, 1)
with conditional variance

σ2t jt�1 = γ+ βσ2t�1jt�2 + αy2t�1, γ > 0, β � 0, α � 0

σ2t jt�1 = γ+ φσ2t�1jt�2 + ασ2t�1jt�2ut�1,

where φ = α+ β and ut�1 = y2t�1/σ2t�1jt�2 � 1 is a martingale di¤erence
(MD). Weakly stationary if φ < 1.
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GARCH

Observation driven models - parameter(s) of conditional distribution are
functions of past observations. Contrast with parameter driven, eg
stochastic volatility (SV) models
The variance in SV models is driven by an unobserved process. The
�rst-order model is

yt = σt εt , σ2t = exp (λt ) , εt � IID (0, 1)

λt+1 = δ+ φλt + ηt , ηt � NID
�
0, σ2η

�
with εt and ηt mutually independent.
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GARCH-t

Stock returns are known to be non-normal

Assume that zt has a Student tν-distribution, where ν denotes
degrees of freedom - GARCH-t model.

The t-distribution is employed in the predictive distribution of returns
and used as the basis for maximum likelihood (ML) estimation of the
parameters, but it is not acknowledged in the design of the equation
for the conditional variance.

The speci�cation of the σ2t jt�1 as a linear combination of squared
observations is taken for granted, but the consequences are that
σ2t jt�1 responds too much to extreme observations and the e¤ect is
slow to dissipate.

Note that QML estimation procedures do not question this linearity
assumption. (Also not straightforward for t - see Hall and Yao, 2003)
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Exponential GARCH (EGARCH)

In the EGARCH model

yt = σt jt�1zt , zt is IID(0, 1),

with �rst-order dynamics

ln σ2t jt�1 = δ+ φ ln σ2t�1jt�2 + θ(jzt�1j � E jzt�1j) + θ�zt�1

The role of zt is to capture leverage e¤ects.
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EGARCH

Weak and covariance stationary if jφj < 1. More general in�nite MA
representation. Moments of σ2t jt�1 and yt exist for the GED(υ)
distribution with υ > 1. The normal distribution is GED(2).

If zt is tν distributed, the conditions needed for the existence of the
moments of σ2t jt�1 and yt are rarely ( if ever) satis�ed in practice.

No asymptotic theory for ML. See reviews by Linton (2008) and
Zivot (2009). For GARCH there is no comprehensive theory.
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DCS Volatility Models

What does the assumption of a tν-distribution imply about the
speci�cation of an equation for the conditional variance?
The possible inappropriateness of letting σ2t jt�1 be a linear function of past
squared observations when ν is �nite becomes apparent on noting that, if
the variance were constant, the sample variance would be an ine¢ cient
estimator of it.
Therefore replace ut in the conditional variance equation

σ2t+1jt = γ+ φσ2t jt�1 + ασ2t jt�1ut ,

by another MD

ut =
(ν+ 1)y2t

(ν� 2)σ2t jt�1 + y2t
� 1, �1 � ut � ν, ν > 2.

which is proportional to the score of the conditional variance.
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Exponential DCS Volatility Models

yt = εt exp(λt pt�1/2), t = 1, ....,T ,

where the serially independent, zero mean variable εt has a tν�distribution
with degrees of freedom, ν > 0, and the dynamic equation for the log of
scale is

λt pt�1 = δ+ φλt�1pt�2 + κut�1.

The conditional score is

ut =
(ν+ 1)y2t

ν exp(λt jt�1) + y2t
� 1, �1 � ut � ν, ν > 0

NB The variance is equal to the square of the scale, that is
(ν� 2)σ2t jt�1/ν for ν > 2.
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Figure: Impact of ut for tν with ν = 3 (thick), ν = 6 (medium dashed) ν = 10
(thin) and ν = ∞ (dashed).
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Beta-t-EGARCH

The variable ut may be expressed as

ut = (ν+ 1)bt � 1,

where

bt =
y2t /ν exp(λt pt�1)

1+ y2t /ν exp(λt pt�1)
, 0 � bt � 1, 0 < ν < ∞,

is distributed as Beta(1/2, ν/2), a Beta distribution. Thus the u0ts are
IID.
Since E (bt ) = 1/(ν+ 1) and Var(bt ) = 2ν/f(ν+ 3)(ν+ 1)2g, ut has
zero mean and variance 2ν/(ν+ 3).
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Beta-t-EGARCH

Moments exist and ACF of jyt jc , c � 0, can be derived.

Closed form expressions for moments of multi-step forecasts of
volatility can be derived and full distribution easily simulated.

Asymptotic distribution of ML estimators with analytic expressions for
standard errors.

Can handle time-varying trends (eg splines) and seasonals (eg time of
day or day of week).
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Gamma�GED-EGARCH

When the conditional distribution of yt has a GED(υ) distribution, ut is a
linear function of jyt jυ . These variables can be transformed so as to have
a gamma distribution and the properties of the model are again derived.
The normal distribution is a special case of the GED, as is the double
exponential, or Laplace, distribution. The conditional variance equation for
the Laplace model has the same form as the conditional variance equation
in the EGARCH model of Nelson (1991).
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Figure: Impact of ut for GED with υ = 1 (thick), υ = 0.5 (thin) and υ = 2
(dashed).
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Beta-t-EGARCH

Theorem
For the Beta-t-EGARCH model λt pt�1 is covariance stationary, the
moments of the scale, exp (λt pt�1/2) , always exist and the m� th
moment of yt exists for m < ν. Furthermore, for ν > 0, λt pt�1 and
exp (λt pt�1/2) are strictly stationary and ergodic, as is yt .

The odd moments of yt are zero as the distribution of εt is symmetric.
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Beta-t-EGARCH

The even moments of yt in the stationary Beta-t-EGARCH model are
found from the MGF of a beta:

E (ymt ) = E (jεt jc )emγ/2
∞

∏
j=1
e�ψjm/2βν(ψjm/2), m < ν.

=
νm/2Γ(m2 +

1
2 )Γ(

�m
2 + ν

2 )

Γ( 12 )Γ(
ν
2 )

emγ/2
∞

∏
j=1
e�ψjm/2βν(ψjm/2)

where

βν(a) = 1+
∞

∑
k=1

 
k�1
∏
r=0

1+ 2r
ν+ 1+ 2r

!
ak (ν+ 1)k

k !
, 0 < ν < ∞.

is Kummer´s (con�uent hypergeometric) function.
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Beta-t-EGARCH: Autocorrelation functions of powers of
absolute values

The autocorrelations of the squared observations are given by analytic
expressions. These involve gamma and con�uent hypergeometric functions.
But the ACFs can be computed for the absolute observations raised to any
positive power; see Harvey and Chakravary (2009)
Heavy-tails tend to weaken the autocorrelations.

Andrew Harvey , (Cambridge University) Volatility and Heavy Tails December 2011 35 / 75



Forecasts

The standard EGARCH model readily delivers the optimal `�step ahead
forecast - in the sense of minimizing the mean square error - of future
logarithmic conditional variance. Unfortunately, as Andersen et al (2006,
p804-5, p810-11) observe, the optimal forecast of the conditional variance,
that is ET (σ2T+`pT+`�1), where ET denotes the expectation based on
information at time T , generally depends on the entire `�step ahead
forecast distribution and this distribution is not usually available in closed
form for EGARCH.
The exponential conditional volatility models overcome this di¢ culty
because an analytic expression for the conditional scale and variance can
be obtained from the law of iterated expectations. Expressions for higher
order moments may be similarly derived.
The full distribution is easy to simulate.
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Asymptotic distribution of ML estimator

In DCS models, some or all of the parameters in λ are time-varying, with
the dynamics driven by a vector that is equal or proportional to the
conditional score vector, ∂ ln Lt/∂λ. This vector may be the standardized
score - ie divided by the information matrix - or a residual, the choice
being largely a matter of convenience. A crucial requirement - though not
the only one - for establishing results on asymptotic distributions is that
It (λ) does not depend on parameters in λ that are subsequently allowed
to be time-varying. The ful�llment of this requirement may require a
careful choice of link function for λ.
Suppose initially that there is just one parameter, λ, in the static model.
Let k be a �nite constant and de�ne

ut = k.∂ ln Lt/∂λ, t = 1, ...,T .
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Information matrix for the �rst-order model

Although

λt pt�1 = δ+ φλt�1pt�2 + κut�1, jφj < 1, κ 6= 0, t = 2, ...,T , (1)

is the conventional formulation of a �rst-order dynamic model, it turns out
that the information matrix takes a simpler form if the paramerization is in
terms of ω rather than δ. Thus

λt pt�1 = ω+ λ†
t pt�1, λ†

t+1pt = φλ†
t pt�1 + κut (2)

Re-writing the above model in a similar way to (1) gives

λt pt�1 = ω(1� φ) + φλt�1pt�2 + κut�1. (3)
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Information matrix for the �rst-order model

The following de�nitions are needed:

a = Et�1(xt ) = φ+ κEt�1

�
∂ut

∂λt pt�1

�
= φ+ κE

�
∂ut
∂λ

�
(4)

b = Et�1(x2t ) = φ2 + 2φκE
�

∂ut
∂λ

�
+ κ2E

�
∂ut
∂λ

�2
� 0

c = Et�1(utxt ) = κE
�
ut

∂ut
∂λ

�
Because they are time invariant the unconditional expectations can replace
conditional ones.
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Information matrix for the �rst-order model

Assume that the the pdf is continuous and twice di¤erentiable and that
the joint distribution of (ut , u0t )

0 does not depend on λ and is time
invariant with �nite second moment, that is, E (u2�kt u0kt ) < ∞, k = 0, 1, 2.
Provided that b < 1,

I(ψ) = I .D(ψ) = (σ2u/k2)D(ψ),

where

D(ψ) = D

0@ κ
φ
ω

1A =
1

1� b

24 A D E
D B F
E F C

35 , b < 1,

with

A = σ2u , B =
κ2σ2u(1+ aφ)

(1� φ2)(1� aφ)
, C =

(1� φ)2(1+ a)
1� a ,

D =
aκσ2u
1� aφ

, E =
c(1� φ)

1� a and F =
acκ(1� φ)

(1� a)(1� aφ)
.
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Asymptotic theory for the �rst-order model

Theorem

The ML estimator of ψ, denoted eψ, is consistent and the limiting
distribution of

p
T (eψ�ψ0) multivariate normal with mean vector zero

and covariance matrix

Var(eψ0) = I
�1(ψ0) = I

�1D�1(ψ0). (5)

The proof follows along the lines of Jensen and Rahbek (ET, 2004), but
the details are much simpler. Assume that ln L is three times continuously
di¤erentiable for ψ, ψ0 is an interior point of the compact parameter
space, and the following are true.
(i) As T ! ∞, (1/

p
T )∂ ln L(ψ0)/∂ψ !N(0, I(ψ0)), where I(ψ0) is p.d.

(ii) As T ! ∞, (�1/T )∂2 ln L(ψ0)/∂ψ∂ψ0 P! I(ψ0)
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Asymptotic theory for the �rst-order model

(iii) If ψi , i = 1, .., n denote the parameters in ψ,

max
h,i ,j=1,...,n

sup
ψ2N (ψ0)

����� ∂3 ln L
T .∂ψh∂ψi∂ψj

����� � cT ,
where N(ψ0) is a neighbourhood of the true parameter value, ψ0, and

0 � cT
P! c , 0 < c < ∞.

It is not di¢ cult to show that (iii) holds for IID observations from
Student�s t as the score and its �rst two derivatives are bounded. The
argument needs to be combined with the following result on the
stationarity and ergodicity of the derivatives of λt pt�1.
Proposition The �rst three derivatives of λt pt�1 wrt κ, φ and ω are
stochastic recurrence equations (SREs) and the condition b < 1 is
su¢ cient to ensure that they are strictly stationarity and ergodic at the
true parameter value.
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Asymptotic theory for Beta-t-EGARCH

The u0ts are IID. Di¤erentiating gives

∂ut
∂λ

=
�(ν+ 1)y2t ν exp(λ)
(ν exp(λ) + y2t )2

= �(ν+ 1)bt (1� bt ),

and since, like ut , this depends only on a beta variable, it is also IID. All
moments of ut and ∂ut/∂λ exist.
The condition b < 1 implicitly imposes constraints on the range of κ.
But the constraint does not present practical di¢ culties.
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Asymptotic theory for Beta-t-EGARCH

Proposition
For a given value of ν, the asymptotic covariance matrix of the dynamic
parameters has

a = φ� κ
2ν

ν+ 3

b = φ2 � 4φκ
ν

ν+ 3
+ κ2

12ν(ν+ 1)
(ν+ 5)(ν+ 3)

c = κ
4ν(1� ν)

(ν+ 5)(ν+ 3)
.
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Figure: b against κ for φ = 0.98 and (i) t � distribution with ν = 6 (solid), (ii)
normal (upper line), (iii) Laplace (thick dash).
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Asymptotic theory for Beta-t-EGARCH

Proposition
The asymptotic distribution of the dynamic parameters changes when ν is
estimated because the ML estimators of ν and λ are not asymptotically
independent in the static model. Speci�cally

I (λ, ν) =
1
2

"
ν

(ν+3)
�1

(ν+3)(ν+1)
�1

(ν+3)(ν+1) h(ν)

#

where

h(ν) =
1
2

ψ0 (ν/2)� 1
2

ψ0 ((ν+ 1)/2)� ν+ 5
ν (ν+ 3) (ν+ 1)

and ψ0 (.) is the trigamma function
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Leverage e¤ects

The standard way of incorporating leverage e¤ects into GARCH models is
by including a variable in which the squared observations are multiplied by
an indicator, I (yt < 0). GJR. In the Beta-t-EGARCH model this
additional variable is constructed by multiplying (ν+ 1)bt = ut + 1 by
I (yt < 0).
Alternatively, the sign of the observation may be used, so

λt pt�1 = δ+ φλt�1pt�2 + κut�1 + κ�sgn(�yt�1)(ut�1 + 1)

and hence λt pt�1 is driven by a MD.
(Taking the sign of minus yt means that κ� is normally non-negative for
stock returns.)
Results on moments, ACFs and asymptotics may be generalized to
cover leverage.
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Application of Beta-t-EGARCH to Hang Seng and
Dow-Jones

Dow-Jones from 1st October 1975 to 13th August 2009, giving T = 8548
returns.
Hang Seng from 31st December 1986 to 10th September 2009, giving
T = 5630.
As expected, the data have heavy tails and show strong serial correlation
in the squared observations.
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Hang Seng DOW-JONES
Estimates (SE) Asy. SE Estimates (SE) Asy. SE

δ 0.006 (0.002) 0.0018 -0.005 (0.001) 0.0026
φ 0.993 (0.003) 0.0017 0.989 (0.002) 0.0028

κ 0.093 (0.008) 0.0073 0.060 (0.005) 0.0052
κ� 0.042 (0.006) 0.0054 0.031 (0.004) 0.0038
ν 5.98 (0.45) 0.355 7.64 (0.56) 0.475

a .931 .946
b .876 .898
Estimates with numerical and asymptotic standard errors
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Figure: Dow-Jones absolute (de-meaned) returns around the great crash of
October 1987, together with estimated conditional standard deviations for
Beta-t-EGARCH and GARCH-t, both with leverage.
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Explanatory variables for volatility

Andersen and Bollerslev (1998) - intra-day returns with explanatory
variables eg time of day e¤ects
Beta-t-EGARCH model is

yt = εt exp(λt pt�1/2), t = 1, ..,T ,

where

λt pt�1 = w0tγ+λ†
t pt�1,

λ†
t pt�1 = φ1λ

†
t�1pt�2 + κut�1

No pre-adjustments needed.
Asymptotics work and extend to time-varying trends and seasonals
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Asymptotic theory with explanatory variables

A non-zero location can be introduced into the t-distribution without
complicating the asymptotic theory.
More generally the location may depend linearly on a set of static
exogenous variables,

yt = x0tβ+ εt exp(λt pt�1/2), t = 1, ....,T ,

in which case the ML estimators of β are asymptotically independent of
the estimators of ψ and ν.
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Components

Engle and Lee (1999) proposed a GARCH model in which the variance is
broken into a long-run and a short-run component. The main role of the
short-run component is to pick up the temporary increase in variance after
a large shock. Another feature of the model is that it can approximate
long memory behaviour.
EGARCH models can be extended to have more than one component:

λt pt�1 = ω+ λ1,t pt�1 + λ2,t pt�1

where

λ1,t pt�1 = φ1λt�1pt�2 + κ1ut�1
λ2,t pt�1 = φ2λt�1pt�2 + κ2ut�1

Formulation - and properties - much simpler. Asymptotics hold for ML.
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Stochastic location and stochastic scale

The Student t model for time-varying location may be combined with one
for the scale.

yt = ω+ µt jt�1 + exp(λt jt�1)εt
µt+1jt = φµµt jt�1 + κµuµt ,

λt+1pt = δ+ φλλt pt�1 + κλuλt

where

uµt =

 
1+

(yt � µt jt�1)
2

νe2λt jt�1

!�1
(yt � µt jt�1)

and the score in Beta-t-EGARCH becomes

uλt =
(ν+ 1)(yt � µt jt�1)

2

ν exp(2λt pt�1) + (yt � µt jt�1)
2 � 1
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Stochastic location and stochastic scale: US in�ation

Seasonally adjusted rate of in�ation in the United States. The rate of
in�ation is often taken to follow a random walk plus noise and so the
estimator of the level is an exponentially weighted moving average of
current and past observations. Thus

µt+1jt = µt jt�1 + κµvt ,

Fitting a Gaussian model with the STAMP8 package of Koopman et al
(2007), gives an estimate of 0.579 for the parameter corresponding to κµ.
The plot of the �ltered level, µt+1jt , shows it to be sensitive to extreme
values, while the ACF of the absolute values of the residuals provides
strong evidence of serial correlation in variance.
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Figure: Filtered estimates of level from a Gaussian random walk plus noise �tted
to US in�ation.
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Stochastic location and stochastic scale: US in�ation

ML estimates (with standard errors in parentheses): for location

eκµ = 0.699(0.097),
for scale eδ = �0.370(0.214), eφ = 0.912(0.051), eκ = 0. 118(0.041)
and eν = 11.71(4.58).
The �ltered estimates respond less to extreme values than those from the
homoscedastic Gaussian model.
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Figure: Estimated level of US in�ation from a random walk plus noise model with
the noise modeled as Beta-t-GARCH.
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Non-negative variables: duration, realized volatility and
range

Engle (2002) introduced a class of multiplicative error models (MEMs) for
modeling non-negative variables, such as duration, realized volatility and
range.
The conditional mean, µt pt�1, and hence the conditional scale, is a
GARCH-type process. Thus

yt = εtµt pt�1, 0 � yt < ∞, t = 1, ....,T ,

where εt has a distribution with mean one and, in the �rst-order model,

µt pt�1 = βµt�1jt�2 + αyt�1.

The leading cases are the gamma and Weibull distributions. Both include
the exponential distribution.
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Non-negative variables: duration, realized volatility and
range

An exponential link function, µt pt�1 = exp(λt pt�1), not only ensures that
µt pt�1 is positive, but also allows the asymptotic distribution to be derived.
The model can be written

yt = εt exp(λt pt�1)

with dynamics
λt pt�1 = δ+ φλt�1pt�2 + κut�1,

where, for a Gamma distribution

ut = (yt � exp(λt pt�1))/ exp(λt pt�1)

The response is linear but this is not the case for Weibull, Log-logistic and
F.
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Multivariate models

The DCS location model is

yt= ω+ µt jt�1+νt, νt � tν (0,Ω) , t = 1, ...,T

µt+1jt=Φµt jt�1+Kut .

A direct extension of Beta-t-EGARCH to model changing scale, Ωt pt�1, is
di¢ cult. Matrix exponential is Ωt pt�1 = expΛt pt�1. As a result, Ωt pt�1 is
always p.d. and if Λt pt�1 is symmetric then so is ·t pt�1; see Kawakatsu
(2006, JE). Unfortunately, the relationship between the elements of Ωt pt�1
and those of Λt pt�1 is hard to disentangle. Can�t separate scale from
association.
Issues of interpretation aside, di¤erentiation of the matrix exponential is
needed to obtain the score and this is not straightforward.
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Multivariate models for changing scale

A better way forward is to follow the approach in Creal, Koopman and
Lucas (2011, JBES) and let

Ωt pt�1 = Dt pt�1Rt pt�1Dt pt�1,

where Dt pt�1 is diagonal and Rt pt�1 is a pd correlation matrix with
diagonal elements equal to unity. An exponential link function can be used
for the volatilities in Dt pt�1.
If only the volatilities change, ie Rt pt�1 = R, it is possible to derive the
asymptotic distribution of the ML estimator.

Andrew Harvey , (Cambridge University) Volatility and Heavy Tails December 2011 65 / 75



Estimating changing correlation

Assume a bivariate model with a conditional Gaussian distribution. Zero
means and variances time-invariant.
How should we drive the dynamics of the �lter for changing correlation,
ρt jt�1, and with what link function ?
Specify the standard deviations with an exponential link function so
Var(yi ) = exp(2λi ), i = 1, 2.
A simple moment approach would use

y1t
exp(λ1)

y2t
exp(λ2)

= x1tx2t ,

to drive the covariance, but the e¤ect of x1 = x2 = 1 is the same as
x1 = 0.5 and x2 = 4.
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Estimating changing correlation

Better to transform ρt jt�1 to keep it in the range, �1 � ρt jt�1 � 1. The
link function

ρt jt�1 =
exp(2γt jt�1)� 1
exp(2γt jt�1) + 1

allows γt jt�1 to be unconstrained. The inverse is the arctanh
transformation originally proposed by Fisher to create the z-transform (his
z is our γ) of the correlation coe¢ cient, r , which has a variance that
depends on ρ.
But tanh�1 r is asymptotically normal with mean tanh�1 ρ and variance
1/T .
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Estimating changing correlation

The dynamic equation for correlation is de�ned as

γt+1jt = (1� φ)ω+ φγt jt�1 + κut , t = 1, ...,T .

Setting xi = yi exp(�λi ), i = 1, 2, as before gives the score as

∂ ln L
∂γ

=
1
2
(x1 + x2)2 exp(�γt jt�1)�

1
2
(x1 � x2)2 exp(γt jt�1),

The score reduces to x1x2 when ρ = 0, but more generally the second
term makes important modi�cations. It is zero when x1 = x2 while the
�rst term gets larger as the correlation moves from being strongly positive,
that is γt jt�1 large, to negative. In other words, x1 = x2 is evidence of
strong positive correlation, so little reason to change γt jt�1 when ρt jt�1 is
close to one but a big change is needed if ρt jt�1 is negative.
Opposite e¤ect if x1 = �x2.
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Estimating changing association

The ML estimators of γ and the λ0s are asymptotically independent.
The condititional score also provides guidance on dynamics for a copula -
Creal et al (2011).
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Conclusions

Is specifying the conditional variance in a GARCH-t model as a linear
combination of past squared observations appropriate? The score of the
t-distribution is an alternative to squared observations.
**
The score transformation can also be used to formulate an equation for
the logarithm of the conditional variance, in which case no restrictions are
needed to ensure that the conditional variance remains positive.
**
Since the score variables have a beta distribution, we call the model
Beta-t-EGARCH. The transformation to beta variables means that all
moments of the observations exist when the equation de�ning the
logarithm of the conditional variance is stationary.
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Furthermore, it is possible to obtain analytic expressions for the kurtosis
and for the autocorrelations of powers of absolute values of the
observations.
**
Volatility can be nonstationary, but an attraction of the EGARCH model is
that, when the logarithm of the conditional variance is a random walk, it
does not lead to the variance collapsing to zero almost surely, as in
IGARCH.
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Closed form expressions may be obtained for multi-step forecasts of
volatility from Beta-t-EGARCH models, including nonstationary models
and those with leverage.There is a closed form expression for the mean
square error of these forecasts. (Or indeed the expectation of any power).
**
When the conditional distribution is a GED, the score is a linear function
of absolute values of the observations raised to a positive power. These
variables have a gamma distribution and the properties of the model,
Gamma-GED-EGARCH, can again be derived. For a Laplace distribution,
it is equivalent to the standard EGARCH speci�cation.
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Beta-t-EGARCH and Gamma-GED-GARCH may both be modi�ed to
include leverage e¤ects.
**
ML estimation of these EGARCH models seems to be relatively
straightforward, avoiding some of the di¢ culties that can be a feature of
the conventional EGARCH model.
**
Unlike EGARCH models in general, a formal proof of the asymptotic
properties of the ML estimators is possible. The main condition is that the
score and its �rst derivative are independent of the TVP and hence
time-invariant as in the static model.
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Extends to (1) Two-component model; (2) Explanatory variables in the
level or scale. (3) Higher-order models. (4) Nonstationary components (5)
Skew distributions
**
Class of Dynamic Conditional Score models includes changing location and
changing scale/location in models for non-negatve variables.
**
Provides a solution to the speci�cation of dynamics in multivariate models,
including copulas.
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*** THE END ***

Slides available at
http://www.econ.cam.ac.uk/faculty/harvey/volatility.pdf
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