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Very nice paper.

Model achieves a “good” measure of the output gap

(Gali, Smets and Wouters 2011)
+

careful use of EA survey data and real-time data

I

estimate the GSW on Euro Area data
assess the role of real-time data uncertainty

real-time forecasting horse-race with various models

E A

assess informativeness of survey data
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This Paper - Estimation

Key features of the GSW model

¢ labour supply decisions on the extensive rather than
intensive margin

e preference specification a la Jaimovich and Rebelo (nests
GHH and KPR preferences)

¢ rest of the economy as Smets and Wouters (2007)

1. Estimated for the Euro area over the sample
19850Q1-2010Q4 and compared with results for US data

a. average unemployment rate higher than in the US

b. Asin the US, data seems prefer a preferences
specification closer to GHH

c. Price and wages stickiness higher than in the US

d. MP puts higher weight on the output gap and lower weight
on inflation

e. risk premium biggest driver of the output gap
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Estimation - My Comments

e Results point to a less flexible economy with more
persistent effects of shocks on key macro-variables
— as expected

e Monetary policymaker less hawkish than in the US?
Estimation sample for the US stops in 2007Q4, before the
great recession. — make them comparable?

e Risk premium is the key driver. — less structure, more
weight?
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How important is the measure of labour used to obtain a “good”
measure of the output gap?
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Estimation - My Comments

How important is the measure of labour used to obtain a “good”
measure of the output gap?

output gap ’/ﬁ \
total employment

output gap
hours

Jan70 Jan80 Jan90 Jan00 Janl0 Jan70 Jan80 Jan90 Jan00

But labour supply decisions are not modelled differently.....



2. Calculate the output gap using successive data vintages.
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Data Uncertainty and the Output gap

2. Calculate the output gap using successive data vintages.
e some uncertainty arising from data revisions — 1-2%

e in spite of this uncertainty sign of the output gap is know
most of the time.

¢ also account for estimation uncertainty.

What about parameter uncertainty?



Perturbina a subset of the parameters around the posterior
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Uncertainty

Perturbing a subset of the parameters around the posterior
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3. Real-time forecasting
- use last available quarterly data — unbalanced panel but
not mixed frequency

- Unbalancedness dealt with Waggoner and Zha (1999)
conditioning methodology

and compares it with
¢ RW model
e BVAR

e GSW including SPF forecasts
¢ News interpretation: fix DSGE forecast to the SPF
¢ Noise interpretation: SPF are noisy indicators of RE
forecasts implied by the model
— Forecasting performance of the DSGE similar to the BVAR
(no model dominates) BUT adding SPF has only limited effect
on the performance
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Forecasting Experiment - My comments

e Why use Waggoner and Zha (1999)?
— Banbura, Giannone and Lenza (2010) technique is
more general as it applies to all state space models and
handles easily large dimensional systems.

¢ You choose to ignore higher frequency data. There is
some research focussing on incorporating higher
frequency data in structural models
¢ Giannone, Monti, Reichlin (2010)
e Giannone, Modugno, Monti, Reichlin (2011)
e Foroni, Marcellino (2011)
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