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Introduction

Two VAR features helpful for forecasting and structural analysis:

@ Large variable set
e Banbura, Giannone, and Reichlin (2010), Carriero, Clark, and
Marcellino (2015), Giannone, Lenza, and Primiceri (2015) and Koop
(2013)

@ Time variation in volatility

o Clark (2011), Clark and Ravazzolo (2015), Cogley and Sargent (2005),
D’Agostino, Gambetti and Giannone (2013), and Primiceri (2005)
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Introduction

Few papers provide approaches for accommodating both features.
Recent exceptions:
@ Koop and Korobilis (2013), Koop, et al. (2016): computational
shortcut using exponential smoothing of volatility

e Carriero, Clark, and Marcellino (2016): single volatility factor and
specific prior that permits use of N-W steps
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Introduction

Allowing large VARs with homoskedasticity requires symmetry of
likelihood and prior.

@ Homoskedastic VARs: SUR models w/ the same regressors in each
equation

@ Symmetry across equations — likelihood has a Kronecker structure —
OLS estimation equation by equation

@ With homoskedasticity, large BVARs require a specific prior structure,
of conjugate N-W:

e The coefficients of each equation feature the same prior variance
matrix (up to a constant of proportionality).

e Priors are correlated across equations, with a correlation structure
proportional to ¥.
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Introduction

More general priors break symmetry and make large models
computationally difficult.
@ Priors more general than conjugate N-W break the Kronecker
structure and symmetry.
o Examples: prior with Litterman-style cross-variable shrinkage or
Normal-diffuse prior
@ Model needs to be vectorized for estimation

@ Drawing the VAR coefficients from the conditional posterior involves
a variance matrix of dimension N? x lags.

SV also breaks symmetry and makes large models difficult

@ Each equation driven by a different volatility — Model needs to be
vectorized

e Drawing the VAR coefficients involves a variance matrix of dimension
N? x lags.

v
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Introduction

We develop a new estimation approach that makes tractable large
models with asymmetric priors or SV
@ Algorithm exploits a simple triangularization of the VAR, which
permits drawing VAR coefficients equation by equation
@ This reduces the computational complexity for estimating the VAR
model from N® to N*, greatly speeding up estimation.

@ The triangularization can easily be inserted in any pre-existing
algorithm for estimation of BVARs.

e Example code to be available on Carriero and Marcellino webpages

o Estimation of large VARs with SV and flexible priors becomes feasible.

i
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Introduction

Application 1: Structural analysis of BVAR-SV in 125 monthly
variables

@ SV estimates: heterogeneity and yet much commonality

@ Impulse responses for a policy shock

Application 2: Out-of-sample forecasts from BVAR-SV in 20 monthly
variables

@ Larger model forecasts better than smaller model

@ SV improves accuracy of both density and point forecasts
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0 BVAR-SV specification and impediments to large models
© Our estimation method for large BVARs

© Application 1: Structural analysis with large BVAR-SV
@ Application 2: Out-of-sample forecasting

© Conclusions
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BVAR-SV Model

With N variables:

v = I—IO + I_I(L)yt_l + Vi
Vi = Afll\?'5et, er ~ iid N0, Iy); var(vy) = X; = ATINATT
InXje = InXje1+ee, j=1,...,N

e ~ iid N(O,d)

o Let X; denote the (Np + 1)-dimensional vector of regressors in each
equation

Collect parameter blocks and latent states:
o Parameters: © = {[1, A, d}
o LatentstatesIn);;, t=1,...,T,j=1,....N
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BVAR-SV Model: standard system estimation

Priors:
vec(l) ~ N(vec(gn),gn)
A~ N(HA’QA)
¢ ~ IW(dy ®,do)

InAjo ~ uninformative Gaussian
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BVAR-SV Model: standard system estimation

Posteriors:

Vec(n)|A7/\T7yT ~ N(Vec(ﬂn)aﬂn)
A‘I_I:/\T7y7_ ~ N(ﬁAaﬂA)
OAr,yr ~ IW((de+ T) ¥, de + T),

@ Means and variances of conditional normal distributions take
GLS-based form, combining prior moments and likelihood moments

v

Gibbs sampler for p(©, Ar|yr):
e Draw from p(©|Ar, y7) using conditional posteriors above

e Draw from p(A7|©, y7) using the mixture of normals approximation
and multi-move algorithm of Kim, Shepard and Chib (1998)
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BVAR-SV Model: impediments to standard system

estimation with a large model

@ Sampling the VAR coefficients involves drawing
a N(Np + 1)—dimensional vector rand, and computing

T
vec(N™) = Qn {vec <Z Xtyézt_l) + invec(un)}—i—cho/(ﬁn)xrand
t=1

(1)
@ This calculation requires: i) computing Qn by inverting

-
Qn' = Qp' + ) (T @XeX)):
t=1

ii) computing its Cholesky factor chol/(Qn); iii) multiplying the
matrices obtained in i) and ii) by the vector in the curly brackets of
(1) and the vector rand, respectively.

e Each operation requires O(N®) elementary operations, making the
total computational complexity to draw M™ equal 4 x O(N®).
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Homoskedastic BVARs: similar impediments with flexible

priors

Model:
ye =Moo+ M(L)yt—1 + v¢, v ~iid N(0,X)

Consider a general N-W prior:
vec() ~ N(vec(y), Qn)i T ~ IW(ds - £, ds)

Posterior:

vec(ﬂ)|Z,y ~ N(VeC(ﬁn),ﬁn); Z||_|,_y ~ /W((dz + T) : iadi + T)

.
Q'+ ) (T @ XeX))
t=1

Q!

Impediment to large models: Computational requirements with
system variance {2 that also exist with SV formulation
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Homoskedastic BVARs: standard approach to making large

models tractable

Following literature on large VARs, make the prior conjugate (and
symmetric) N-W.

vec(IM)|X ~ N(vec(py), X ® Qo)
@ Prior for I is conditional on X

Posterior variance simplifies and speeds up calculations:

-
Ot =X '@yt + D] XtXt’}
t=1
@ Kronecker structure permits manipulating the two terms in the

Kronecker product separately, reducing the computational complexity

to N3
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Homoskedastic BVARs: standard approach to making large

models tractable

The conjugate (and symmetric) N-W form comes with some
unappealing restrictions.

o Issues discussed by Rothenberg (1963), Zellner (1973), Kadiyala and
Karlsson (1993, 1997), and Sims and Zha (1998)

@ Rules out asymmetry in the prior across equations; coefficients of
each equation feature the same prior variance matrix g

@ Rules out one aspect of the Litterman (1986) prior: extra shrinkage
on “other” lags vs. “own" lags

@ > ® Qg implies prior beliefs correlated across the equations of the
reduced form VAR

e Sims and Zha (1998) specify a prior featuring independence among the
structural equations, but does not achieve computational gains for an
asymmetric prior on the reduced form.

v
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Our estimation method for large VARs

Key to approach: In the Gibbs sampler, the posterior of the VAR
coefficients [1 is conditional on A and A+.

o 7() = the vector of coefficients for equation i contained in row i of
I, for the intercept and coefficients on lagged y;

o Consider the decomposition v, = A~1A?3¢,:

Vit 1 0 .. O A2 0 0 €1t
* 0.5
V2,t _ 32’1 1 0 )\2’1. 62,t
1 0 .. 0
% * 0.5
VNt ayi - ayn-1 1 0 ... 0 Ay} EN,t
v
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Our estimation method for large VARs

Rewrite the VAR:

i 0.5
yig = m -+ 73}/i,t—l+)\17t€1,t
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with the generic equation (x) for variable j:

N p
% 10.5 *
yj,t_(aj,l)\l,tel,t“‘...“‘aj”j 1)\ 1t€_/ 11: = 22 /y,t /+>\j,t€j,t

v

Consider estimating these equations in order from j =1toj =N
@ In the conditional posterior, the dependent variable of (i) is known.

@ Dependent variable; = y; — ax the estimated residuals of all the
previous j — 1 equations.

v
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Our estimation method for large VARs

_ 0.5
o Lety*, =y — (@F A )2ene + o+ aF 1A% € 14)
@ The model is a system of standard generallzed linear regression models
with indep. Gaussian disturbances with mean 0 and variance \; ;:

0
_77'()4_22 /yltl+)\t€_jt7
i=1/=1

Factorize the full conditional posterior distribution of I1:

p(MAAT,y) = p(rM)aWN=D 7z(N=2) 7O A AT, y)
p(Tr(N_l)|7r(N_2)7 R 77[-(1)’ A7 AT?.y)

xp(r WA AT, y),
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Our estimation method for large VARs

Our conditional posterior for the VAR coefficients:
p(MUHNITTH A A, y)ocp(y|NUH, MY A A7) (NI NitI=1))

o p(y|N¥}, N=1 A A7) = the likelihood of equation j

o p(NU}N1J=1}) = prior on the j-th equation, conditional on the
previous equations

e With typical priors, the equation priors are independent:
p(n{j},n{lrjfl}) = p(n{J})

@ W/o independence, the moments of p(M¥}|M{1%=1}) can be obtained
from the joint prior.
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Our estimation method for large VARs

Our conditional posterior for the VAR coefficients:

e Draw the coefficient matrix I1 in separate blocks MU} obtained from:

I_I{J} ’n{l:j_l}a A7 AT: y ~ N(ﬂl‘l{j} ; ﬁ|'|U})

-

— raY =il —1. %/

Pnn = Qno {Qnu}ﬂn{j} + 2 Xj,t/\j,t yjff}
t=1

.

ol -1 1yt

Qniy = iy + 2 XA i X,
t=1

where Qﬁ{lj} and Bpuy = the prior moments on the j-th equation,
given by the j-th column of y and the j-th block on the diagonal of

o

@ Here Qﬁl is block diagonal, as typical; this can be relaxed

v
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Our estimation method for large VARs

Computational costs (not much):

@ Although we break the conditional posterior for I1 into pieces, we are
still drawing from the conditional posterior for I1.

@ Our triangularization approach produces draws numerically identical
to those that would be obtained using system-wide estimation.

@ For the VAR coefficients, the ordering of variables does not matter.

e Existing BVAR and BVAR-SV code can easily be modified to draw 1
with the triangularized system.
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Our estimation method for large VARs

Computational benefits (significant):

° ﬁﬁ{l,-} is of dimension (Np + 1) square — its manipulation only
involves operations of order O(N?)

o With N equations, obtaining a draw for [1 makes the total
computational complexity of order O(N*)

o Compared to a standard algorithm, the complexity savings is N?

@ CPU savings rise quickly (more than quadratic rate) with the number
of variables.

@ With 20 variables and 13 lags of monthly data, the estimation of the
model using the traditional system-wide algorithm was about 261
times slower.
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Our estimation method for large VARs

Convergence and mixing
@ In a given unit of time, our triangular algorithm will always produce
many more draws than the traditional system-wide algorithm.
@ This speed advantage will improve the precision of MCMC estimates:

e Many more draws to use in averages
e Or increased skip-sampling (preferable with large models) to reduce
correlation across retained draws
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Application 1: large structural VAR with SV

Specification: BVAR-SV(13) in 125 monthly variables from the
dataset of McCracken and Ng (2015)
e Extending constant volatility analyses of (FAVAR) Bernanke, Boivin
and Eliasz (2005) and (large BVAR) Banbura, Giannone, and Reichlin
(2010)

@ VAR coefficient prior (asymmetric): independent Normal-Wishart
prior, Minnesota form, with cross-variable shrinkage

Assessments:
@ Estimates of volatilities and comovement

@ Responses to monetary policy shock

e For identification, the federal funds rate is ordered after slow-moving
and before fast-moving variables.
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Application 1: large structural VAR with SV

Computation:
@ Model includes 203,250 VAR coefficients
@ On a 3.5 GHz Intel Core i7 processor, our algorithm produces 5000
draws (after discarding 500 burning in) in just above 7 hours
@ The traditional system-based algorithm would be extremely difficult,
just for memory requirements: the covariance matrix of the 203,250
coefficients would require about 330 GB of RAM
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Application 1: large structural VAR with SV
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Application 1: large structural VAR with SV
«10°3 PCEPI DPURRG3MOS6SBEA

19701980199(20002010 19701980199020002010
GS10 AAA
1 H .
8 0.6
6 0.4
4 X s » (2

19701980199020002010 197019801992002010

Todd Clark (FRBC) Large VARs June 2016 27 / 41



Application 1: large structural VAR with SV

Results on volatilities:

@ Substantial homogeneity in the volatility patterns of variables
belonging to the same group, such as IP components

Heterogeneity across groups of variables

Principal component analysis on the posterior mean of ¢ indicates
macroeconomic volatility is primarily driven by two shocks

The Great Moderation is evident in most series; the effects of the
recent crisis are more heterogeneous.

Volatilities of real variables and financial variables go back to lower
levels after the peak associated with the crisis.

@ Volatilities of inflation measures have tended to remain elevated
following the crisis.
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Application 1: large structural VAR with SV
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Application 1: large structural VAR with SV
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Application 1: large structural VAR with SV

Results on impulse responses to FFR shock:

@ The patterns of impulse responses align with typical structural
models: significant deterioration in real activity, very limited price
puzzle, a significant deterioration in stock prices, and a less than
proportional increase in the entire term structure

@ Inclusion of SV does not affect substantially the VAR coefficient
estimates with respect to Banbura, Giannone and Reichlin (2010)

@ But it matters for inference and time variation in variance
contributions and shares
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Application 2: forecasts of 20 monthly variables

Variables in baseline specification

Real Personal Income PPI: Commodities

Real PCE PCE Price Index

Real M&T Sales Federal Funds Rate

IP Index Housing Starts

Capacity Utilization: Manufacturing S&P 500

Unemployment Rate U.S.-U.K. exchange rate

All Employees: Total nonfarm Spread, 1y Treasury-Fed funds

Hours: Manufacturing Spread, 10y Treasury-Fed funds

Avg. Hourly Earnings: Goods Spread, Baa-Fed funds

PPI: Finished Goods ISM: New Orders Index
Samples:

@ Estimation sample begins with 1960:3
o Forecast evaluation sample is 1970:3 to 2014:5.
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Application 2: forecasts of 20 monthly variables

Four models:

@ 3-variable BVAR, homoskedastic: growth rate of IP (A In/P), PCE
inflation (A In PECEPI), fed funds rate (FFR)

@ 3-variable BVAR-SV
@ 20-variable BVAR, homoskedastic
@ 20-variable BVAR-SV
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Application 2: forecasts of 20 monthly variables

Drivers of forecast gains:

@ Direct effects:

e SV improves density forecasts by capturing time variation in error
variances.

e Use of a larger dataset should improve point forecasts by improving the
conditional means.

@ Interactions:

o A better point forecast improves the density forecast by better
centering the predictive density.

e SV improves the point forecasts by making parameter estimates more
efficient (GLS).

o This efficiency also helps the predictive densities.
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Application 2: forecasts of 20 monthly variables

RMSE (ratio to benchmark)
INDPRO

11 T T T T T T T T T T

Todd Clark (FRBC) Large VARs June 2016 35 /41



Application 2: forecasts of 20 monthly variables

RMSE (ratio to benchmark)
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Application 2: forecasts of 20 monthly variables

RMSE (ratio to benchmark)
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Application 2: forecasts of 20 monthly variables

mean log-score (deviation from ber
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Application 2: forecasts of 20 monthly variables

mean log-score (deviation from benchmark)
PCEPI
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Application 2: forecasts of 20 m

mean log-score (deviation from benchmark)
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Conclusions

@ We develop a new approach that makes feasible fully Bayesian
inference of large BVARs with SV.

o Also makes feasible the use of asymmetric priors (independent N-W
priors) with SV or constant volatility, in large models

@ The method is based on a straightforward triangularization of the
system, and it is very simple to implement by modifying existing code
for drawing VAR coefficients.

@ The algorithm ensures computational gains of order N2 and yields
better mixing and convergence properties.
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