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Abstract

We propose a decomposition to distinguish between Knightian uncertainty (ambiguity) and
risk, where the first measures the uncertainty about the probability distribution generating
the data, while the second measures uncertainty about the odds of the outcomes when the
probability distribution is known. We use the Survey of Professional Forecasters (SPF) density
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1 Introduction

The recent financial crisis has renewed interest in measuring uncertainty and studying its macro-
economic effects. Stock and Watson (2012) suggest that liquidity-risk and uncertainty shocks are
among the most important factors explaining the decline in U.S. GDP during the Great Reces-
sion, accounting for about two thirds of the GDP decline. Given that uncertainty is inherently
unobserved, this has sparked a wide research agenda on various measures of uncertainty. However,
as shown in Rossi and Sekhposyan (2015), the macroeconomic impact of the various uncertainty
measures can be very different from each other. This naturally leads to the question of what exactly
the uncertainty indices measure and how they differ from each other.

Typically the literature distinguishes between two types of uncertainty. The first type of un-
certainty is the one that rational agents face when making their decisions, as the realization of the
state of nature is not known in advance even if the agents can reasonably contemplate all possible
states of nature and their likelihood. This situation is commonly known as risk. That is, risk is
characterized by situations where one knows the odds of the unknown, that is, one knows the prob-
ability distribution of the stochastic events. Frank Knight (1921) suggested a different definition
of uncertainty, in which agents cannot reasonably contemplate all the possible states of nature or
characterize their probability distributions. Furthermore, even if they are able to characterize the
distributions, they might be unable to assign correct probabilities to future outcomes. For example,
disagreement on the probability distribution of future outcomes is a special case of Knightian un-
certainty, since disagreeing on probability distributions automatically implies that the probability
distributions are not correctly specified.

The empirical literature has proposed several measures of uncertainty, but does not distinguish
between risk and Knightian uncertainty, nor explains how they relate to each other. In addition,
while researchers routinely report correlations among various uncertainty measures or compare
their macroeconomic effects, it is unclear how exactly they are related to each other or whether the
difference in their macroeconomic effects depends on the type of uncertainty they measure.

This paper attempts to study uncertainty in a unified framework. To do so, we introduce a new
measure of uncertainty that is based on forecast densities. Our new measure of uncertainty enables
us to make two main contributions to the literature:

(i) The first main contribution is that we use our new measure of uncertainty to distinguish
between Knightian uncertainty and risk, and their relationship. The use of forecast densities is
key to provide a comprehensive measure of Knightian uncertainty because it allows to quantify

uncertainty pertaining to situations where the odds and outcomes are known, yet either one or
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both are characterized inaccurately, which is the definition of Knightian uncertainty we adhere to.>

(ii) The second main contribution is that we provide a decomposition of our uncertainty mea-
sure into several components that are related to the uncertainty measures used in the literature.
This analysis sheds light on why the various measures of uncertainty differ from each other, and
which one is more appropriate to use depending on the goals of the researcher. Again, the use of
forecast densities is key to provide a comprehensive decomposition of uncertainty into its sources.
In particular, we distinguish between disagreement and aggregate uncertainty. In this respect
our contribution is similar to that of Lahiri and Sheng (2010), who consider the relationship be-
tween aggregate uncertainty and disagreement over the business cycle, yet measure it in terms of
uncertainty and disagreement about the mean of the distribution, as opposed to the whole dis-
tribution. Our approach further enables us to distinguish between measures of realized volatility,
ex-ante uncertainty and bias. These various components have all been used in the literature as
measures of uncertainty. Our approach, on the other hand, enables us to distinguish among them
and understand their relationship to each other.

Several of the components mentioned above have been of interest on their own. For example,
Patton and Timmermann (2010) study disagreement among professional forecasters, but do not
relate disagreement to measures of uncertainty, while Lahiri and Sheng (2010) consider the relation-
ship of aggregate uncertainty and disagreement over the business cycle, yet they do not distinguish
between risk and uncertainty. Jurado, Ludvigson and Ng (2015) use the forecast error variance as
a measure of uncertainty, while D’Amico and Orphanides (2014) consider ex-ante measures of risk
for inflation forecasting.

In addition to our main contributions, we also study how uncertainty and its sources resolve
over time as the agents get closer in time to the event. For example, Patton and Timmermann
(2010) study the resolution of disagreement over time; disagreement is only one of the components
of uncertainty: we investigate both how important disagreement is as a source of overall uncertainty
over time, as well as how the other components of uncertainty resolve over time. Furthermore, we
document the macroeconomic impact and transmission of the various sources of uncertainty that
we identify.

Lastly, we use a stylized macroeconomic model as a framework to discuss the interpretation
of the components of our decomposition in the presence of time-varying macroeconomic risk and
ambiguity. We show that the various components in our decompositions are indeed representative

of sources of uncertainty that the model implies.

2While we attempt to quantify Knightian uncertainty defined as the agents’ inability to correctly characterize
probability distributions or their disagreement on them, clearly we cannot quantify uncertainty associated with the
agents inability to characterize all possible states of nature or situations where they have no opinions on the probability
distributions associated with known states of the nature. Thus, one can think of our Knightian uncertainty measure

as a lower bound on the actual Knightian uncertainty present in the economy.



It is important to note that the existing literature has focused mainly on quantifying and
understanding uncertainty associated with point forecasts, for example by mapping uncertainty to
forecasters’ prediction errors. Though the individual point forecasts are on average consistent with
the weighted mean of their predictive probability distributions (see Lambros and Zarnowitz, 1987),
predictive distributions undoubtedly contain more information. Our goal is to take advantage
of the richer information content of probabilistic forecasts to quantify Knightian uncertainty and
distinguish among various sources of uncertainty. Thus, an important difference between this paper
and the existing literature is that we use the probabilistic forecasts provided by the U.S. Survey of
Professional Forecasters (SPF) to measure and decompose uncertainty.®> We focus mainly on output
growth forecasts: since output growth is indicative of business cycle fluctuations, our analysis
provides an overall measure of macroeconomic uncertainty; in addition, we also discuss inflation
uncertainty measures that might help understand why monetary policy affects short and long term
interest rates differently (Wright, 2011).

Furthermore, a large number of uncertainty measures considered in the literature are ex-post,
since they depend on realizations (such as the uncertainty measures recently proposed by Jurado,
Ludvigson and Ng, 2015; Rossi and Sekhposyan, 2015, 2016; and Scotti, 2013); such ex-post mea-
sures are arguably difficult to square with the notion of economic agents’ forward looking decision
making. In our framework, we are able to distinguish between ex-post measures of uncertainty (for
instance, realized risk or bias) and ex-ante risk. The advantage of our framework is that we are
able to propose an uncertainty measure that shares properties with a large body of uncertainty
measures proposed in the literature, while at the same time, enables us to disentangle components
that might be preferable from a decision-theoretic point of view.

The paper is structured as follows. The next two sections present our density-forecast-based
uncertainty measures and the decompositions we investigate in this paper. Section 4 discusses the
SPF data used for the empirical implementation, while Section 5 presents the empirical results. In
Section 6 we analyze the macroeconomic impact of the various sources of uncertainty. Section 7
interprets our decomposition through the lens of a macroeconomic model. In Section 8 we extend

our results to the analysis of inflation uncertainty, while Section 9 concludes.

3Qur analysis can be done with any predictive density. We choose to use predictive densities from the SPF since
they are produced by professional forecasters monitoring a wider range of indicators rather than a specific parametric
model. Furthermore, the SPF is known for its superior forecasting performance from a point forecasting point of
view, as shown in Giannone, Reichlin and Small (2008) and McCracken, Owyang and Sekhposyan (2015), among

others.



2 An Uncertainty Index Based on Density Forecasts

The uncertainty index we propose in this paper measures the distance, on average across forecasters,
between the forecast distribution provided by an individual forecaster and the perfect forecast
corresponding to the realization, where both are represented by cumulative distribution functions
(CDFs).* We denote the perfect forecast by x;,p, which formally is a random variable equal to
one when the actual realization y;,j is below some threshold r and it is zero otherwise: x;yp (1) =
1(yssn <7).> Note that x4y (r) is defined over the support r, r € R; by varying r, we can
focus on different parts of the predictive distribution. Let p,, p;(r) be the probability forecast
of the outcome x4, (r) being equal to one made by forecaster s, s = 1,..., N, i.e. ps7t+h‘t(7“) =
P(ziip(r) = 1|Qs¢), where g, is the information set available at time t. We measure the s-
th forecaster’s uncertainty as the Mean Squared Forecast Error (MSFE) of his/her probabilistic

forecast about a particular outcome, i.e.:%

Us t+ht (r)=F [($t+h (r) — Ps,t+n|t (7"))2 ’%5—3} ) (1)

where %i_ r is the information set between time ¢t — R and time t.” Note the difference between

the two information sets Qg and 3% r- s is the information set available to forecaster s when
making its probability forecasts. On the other hand, 3¢ . is the information set that we use to
average squared errors over time.

Similarly to Jurado, Ludvigson and Ng’s (2015) measure, eq. (1) is a MSFE; however, it is
a MSFE applied to a forecast distribution. As such, it measures the unpredictable component
associated with each possible value in the domain of the predictive distribution. In fact, w5 (r)
compares the probability that forecaster s assigns to the different states of nature with the realiza-
tion, while error-based measures a la Jurado, Ludvigson and Ng (2015) compare the point forecast
with the realization.®

The overall measure of uncertainty is then defined as the average of the individual uncertainty

across forecasters:

1Y 1Y 9
Ut4-ht (r) = N Zus,t—i—hlt (r) = N ZE [($t+h (r) — Pst+h|t (7”)) |%€—R] .

s=1 s=1
As mentioned above, by varying r we can explore measures of uncertainty in different parts of the

predictive density. We focus on an overall measure of uncertainty (which we label “Uncertainty”)

1 As we explain later, our measure of uncertainty is similar to a Continuous Rank Probability Score (CRPS).

This notation is consistent with Hersbach (2000).

%Tn the forecasting literature, this MSFE is known as the Brier score.

"To simplify notation, we assume in this section that R and N are fixed over time, although in the empirical
application we will let them vary.

8In fact, if one associates the value 7 € R with the corresponding quantile of the distribution, our uncertainty

index measures an average squared error for that quantile.



that integrates the squared probability forecast errors over the whole domain of the distribution,
that is:”

+o00o
Ut+h|t = / U’t—}—h‘t (T) d?". (2)

—0
A graphical interpretation is provided in Figure 1. In the figure, the actual realization equals —2,
denoted by a vertical bar on the left panel; the predictive density is the Normal distribution. The
panel on the right shows the CDF of the Normal distribution, as well as that of the perfect forecast,
for a particular threshold, r = —1. Thus, the perfect forecast assumes ones for values less than —1
(since the realization of —2 is indeed less than —1) and zero otherwise. For any given r, the distance
between the CDF of the forecasted distribution and the perfect forecast, (zi1n (1) — psin(r)), is
depicted by a solid vertical line. Our measure of uncertainty in eq. (2) squares this measure and

integrates it over the various values of r.

INSERT FIGURE 1

3 The Sources of Uncertainty

This section presents our main decompositions of uncertainty into its sources

3.1 Aggregate Uncertainty and Disagreement

One of the goals of this paper is to link existing measures of uncertainty based on aggregate data
with uncertainty measures based on disagreement among forecasters. To do so, we define an aggre-
gate probability density ({pt+h|t (r) }reR)’ which is related to the individual ones ({Ps,t+h|t (r)}
by:

T‘ER)

1
Prynjt (1) = N Zps,t+h|t (r). (3)
s=1

The corresponding uncertainty measure for the aggregate predictive density is:

uﬁrh (r)y=FE [($t+h (1) = Peynt (7“))2 \SLR] :

Appendix A shows that we can decompose the overall uncertainty measure as follows:

Utthlt (r)=FE [(thrh (r) — Di+hlt (7">)2 ‘%—R] +E

N

1 2

N Z (Pt+h|t ("") — Pst+ht (7")) ‘QE—R
s=1

=y (1) + dpgpe () | (4)

"Note that eq. (2) is the negative of the CRPS, as defined in Cneiting and Raftery (2007). In fact, the CRPS is
the integral of Brier scores (Hersbach, 2000, eq. 7).




where dyip (1) = % % E {(pﬂ_mt (1) = Pst4nlt (7“))2 \Si_R} measures the disagreement between
individual forecast denss:itlies and the aggregate forecast density, and it is similar to the disagreement
defined in Patton and Timmermann (2010) for point forecasts. Lahiri and Sheng (2010, eq. 18)
discuss a similar decomposition for point forecasts.

Note that the decomposition in eq. (4) holds for a particular threshold r, thus it accounts for a
forecast error associated with the binary outcome 1 (y;1p, < 7). The overall measure of uncertainty
accounts for uncertainty at all possible values of r by considering the integral of the decomposition
in eq. (4) over r. Thus, we have “Uncertainty” decomposed into “Aggregate Uncertainty” and

“Disagreement”:'%

Ut+h|t5/ Uy p)e (T) dr:/ uf+h‘t (r) dr+/ dippp (1) dr

o0 —o oo
— A
= Utinje +  Dygnp (5)
——
“Aggregate Uncertainty” “Disagreement”

3.2 Knightian Uncertainty and Risk

As shown in Appendix A, we can further decompose the aggregate uncertainty, U fkhl , (r) into com-

ponents that measure mean bias, dispersion of probability forecasts, realized risk and a covariance

term between the forecasted and the ideal distribution as follows:
2
uf+h (r) = <[E (Pt+h|t (r) \%LR) -F ($t+h (r) ’%LR)] ) + V(pt+h\t (r) ’%LR) (6)
+V (g (1) [SF_R) — 2C0v(zia (r) Prgnye (r) [ST_R),

where V'(.) denotes variance. Since the covariance term turns out to be rather small empirically,

we summarize aggregate uncertainty with the following additive decomposition:
A
Ufne™ Bignp + Vignp + Volpppp (7)
~—~— ~—~— ~——
“Mean-Bias” “Dispersion” “(Realized) Risk”
where:

B = [°0, ([E (Pesnye (1) [SE_R) — E (weqn (r) |%§_R)]2) dr is the mean squared bias of

the forecast distribution;

o Viipp = ffooo V(peyn)e (1) | _R)dr is the uncertainty about the ex-ante subjective probabili-

ties in the aggregate distributional forecast

10A reason why the aggregate probability distribution, measured with a simple average of the individual probability
distributions, is a good measure of aggregate uncertainty is the fact that, as in the context of point forecasts,
combinations constructed by simple averages result in more accurately calibrated densities. Futhermore, the average

of probability distributions is a measure widely used in a variety of central banks and policy institutions.



o Volyypp = [0V (2gn (1) |St_) dr is the realized variance of the binary outcome, z1, (r) =

1 (y4+n < r), and thus stands for the inherent risk in the data.

The three component decomposition in eq. (7) has an interesting interpretation. We view
the realized volatility component Vol; ), as a measure of the underlying uncertainty in the data,
and thus a measure of realized risk. On the other end, we view the bias component B, ;; as a
measure of how distant the predictive density is from the perfect prediction on average, while the
dispersion, Vi s, measures the variability in the predictive density. As we will show, Vi p; is
empirically small, so it can be ignored. Knightian uncertainty is measured, in our view, as the
sum of bias, dispersion and disagreement. In fact, Knightian uncertainty measures how uncertain
agents were about events, either because they were unable to correctly assign probabilities to future
outcomes even though they agreed to them, or because they disagreed on those probabilities. The
realized variance or realized volatility, instead, is a measure of risk. To summarize, we have the

following “Knightian uncertainty/(Realized) Risk” decomposition:

Uppnp~  Volgone  + By + Dignpe
N—— ——

“(Realized) Risk”  “Knightian Uncertainty”

3.3 Ex-ante Vs. Ex-post Uncertainty

It is important to note that our proposed measure of uncertainty, Uy p;, as well as aggregate

: A
uncertainty U/} Bt

to refine our measure by distinguishing between an ex-ante component (that does not include the

are constructed using ex-post realizations of the data. Thus, it is interesting

realizations) and an ex-post component (which does). Also, one might wonder how the expected
mean and the variance embedded in the forecast distribution affect our measure of uncertainty.
Let the aggregate predictive distribution for the forecast of y;.;, made at time ¢ be Normal with

mean (i, p; and variance o and the data be i.i.d. We have the following “Ex-ante/Ex-post”

2
thlt
decomposition:

Yt+h — Hithlt Ytth — Methlt Ooinlt
Ughﬁ - |:2Jt+ht¢ (O't+ht> + (yt+h - Mt+h|t) <2Q) (%) - 1):| — 771_‘ (8)

——

e ¢ ”
“Ex-post” “Ex-ante”

where ¢ (.) and @ (.) denote the PDF and the CDF of the Normal distribution, respectively. The
proof is provided in Appendix A and follows Gneiting and Raftery (2007).!
The rightmost component, o, ¢/ \/, is the only component that is not affected by the realiza-

tion, so we refer to it as the “ex-ante” measure of uncertainty. In fact, as the proof suggests, this is

"U'Note that even if U{ih‘t is the difference of two components, it is always positive; thus, the ex-post component

is always bigger than the ex-ante one.



the component that arises from the average distance of random draws from a given predictive dis-
tribution. Moreover, it is a function of the standard deviation of the forecaster’s density forecasts,
and a common measure used in the uncertainty literature as a measure of ex-ante uncertainty.
Note that the ex-ante measure of uncertainty is simply o4 /+/7, which, under Normality, is a
monotone function of the width of the predictive distribution. Thus, the ex-ante measure is linked
to the inter-quantile range measure proposed by Zarnowitz and Lambros (1987), among others.!?
Our ex-ante component might be viewed as a measure of ex-ante risk. Note that, from egs. (7) and
(8), we have that Ex-post ~ By p; + Vigne + Volyipy + Ex-ante. Thus, the ex-post measure of
aggregate uncertainty combines components of Knightian uncertainty, By 4 + Viqp), realized risk
(measured by the volatility in the economy, Vol ;) and ex-ante risk (measured by the variance
of the predictive densities of the forecasters, Ez-ante). Note the difference between V;, ), and Ex-
ante: the first measures the variability of the probability distribution, while the second measures
the width of the distribution at a particular point in time. Thus, if the aggregate density forecast
does not changed over time, Vi, ; would be zero. However, Ez-ante will not be zero as long as
the forecasters provide a distributional forecast.

We should note that there is a major difference between the two decompositions in that the
“Ex-ante” / “Ex-post” decomposition is written in terms of the moments of the original predictive
distribution, while the “Knightian Uncertainty/(Realized) Risk” decomposition is in terms of binary
outcomes summarized by x;yp (). As such, the latter decomposition could be applied to general
situations (general forms of distribution and non-i.i.d. data), while the former one relies heavily on
the assumption of Gaussianity and independence in the underlying predictive distribution. D’Amico
and Orphanides (2014) and Giordani and Soderlind (2003) provide empirical support in favor of
Gaussianity for the Survey of Professional Forecasters, and the i.i.d. assumption would be satisfied
for correctly calibrated density forecasts.

A general note that applies to all proposed decompositions is that the resulting components are
not orthogonal to each other. This is in line with the rest of the empirical literature which typically
finds that a variety of uncertainty measures, constructed from different sources and measuring

different aspects of uncertainty, are correlated with each other.

4 The Data

We use density forecasts from the Survey of Professional Forecasters (SPF) to calculate our uncer-
tainty measures. The Federal Reserve Bank of Philadelphia provides the aggregate (mean proba-

bility distribution) forecasts, as well as the underlying disaggregate density forecasts of a panel of

12For a Gaussian distribution, the inter-quantile range is 1.34c.



professional forecasters.'®> We use the real GNP/GDP growth density forecasts to extract measures
of macroeconomic uncertainty, as real GNP/GDP fluctuations are indicative of the state of the
business cycle, and therefore are representative of macroeconomic uncertainty (Stock and Watson,
1999).

In the SPF data set, forecasters are asked to assign a probability value (over pre-defined inter-
vals) to inflation and output growth for the current and the following (one-year-ahead) calendar
years. The growth rate is defined as the rate of change in the average GDP from one year to
another. The forecasters update the assigned probabilities for the current-year and the one-year-
ahead forecasts on a quarterly basis. Thus, by construction, SPF forecasters provide four quarterly
forecasts of the same target variable each year; this type of forecasts are typically referred to in the
literature as “fixed-event” or “moving-horizon” forecasts. Being fixed-event forecasts, their horizon
changes over the quarter. We use the method proposed by Dovern et al. (2012) to transform
the SPF fixed-event forecasts into fixed-horizon forecasts by constructing a weighted average of
the current-year and next-year forecasts. In detail, for each quarter the survey contains a pair of
“fixed-event” density forecasts for the current-year, which we label f;ﬂEm ;» and for the next-year,
which we label ﬂ% 4 The four-quarter-ahead (fixed-horizon) forecast at time ¢, which we label
}Z:ﬂ ;» is calculated as the average of the two fixed event forecasts using weights that are propor-
tional to their share of the overlap with the forecast horizon. Let k denote the number of quarters
from time ¢ until the end of the year. In quarter one, kK = 4, while in quarter four, &k = 1. Thus, for
example, in the third quarter of the year, the four-step-ahead fixed-horizon forecast overlaps with
the current year forecasts and next year forecasts 50% of the time, respectively. Thus, it would be
the weighted average of the two-fixed event forecasts with weights equal to 2/4 and 2/4. Thus, in
general, for k =1,2,3,4:

—~ ko~ 4—k ~
FH FE FE
ft+4\t = th—&—k\t + 4tk (9)

INSERT FIGURE 2 HERE

Panels A and B in Figure 2 show the evolution of the current and next year densities over
time. The figures plot the mean as well as several quantiles of the distribution, together with the
realization. Panel C, on the other hand shows the fixed horizon forecast, eq. (9). The fixed-horizon
forecast is by construction less smooth than the fixed-event forecasts. However, both share the same
feature that ex-ante uncertainty was higher earlier in the sample, in the sense that both density
forecasts have a wider distribution prior to the mid-1980s relative to the later part of the sample;
this suggest that forecasters noticed the Great Moderation starting mid-1980s. There appears to be
no dramatic shift in the forecasted densities after the Great Recession. Some descriptive statistics

on the SPF distributions is provided in Appendix B.

13The composition of the forecasters can change over time.

10



The analysis of SPF probability distributions is complicated since the SPF questionnaire has
changed over time in various dimensions: there have been changes in the definition of the variables,
the intervals over which probabilities have been assigned, as well as the time horizon for which
forecasts have been made. To mitigate the impact of these problematic issues, we truncate the
data set and consider only the period 1981:111-2014:1L.14

As noted, our uncertainty measure depends on realizations. The realized values of output growth
are from the real-time data set for macroeconomists, also available from the Federal Reserve Bank
of Philadelphia. We use the four-quarter-ahead growth rates of output and prices calculated from
the first release of the realization. For instance, in order to get the 4-quarter-ahead realization at
the start of our sample, 1981:I11, we calculate the growth rate between 1982:1IT and 1981:11I using
the 1982:1V vintage of the data.

5 The Dynamics of Uncertainty over Time, and Its Sources

Figure 3, Panel A, shows the evolution of our estimated measure of uncertainty and its components,
aggregate uncertainty and disagreement, over time. The figure highlights two interesting facts:
disagreement is, in magnitude, only a small portion of the overall measure of uncertainty;'® in
addition, it is trending down until the financial crisis of 2007; this is in sharp contrast with the
overall measure of uncertainty, as well as aggregate uncertainty, which have clear spikes in the early
1980s, early 2000s and the financial crisis. Thus, using disagreement as a measure of uncertainty
may result in underestimating both the overall level of uncertainty in the economy as well as
its fluctuations over time, as currently the level of disagreement is similar to what it was in the
mid-1990s and lower than its value in the late 1980s. In addition, most would agree that the
early 2007-2008 were probably the most uncertain times in the latest decades; while disagreement
increases during that period, it peaks only much later, after the end of the recession, in 2009. Thus,
disagreement (i.e., the component of Knightian uncertainty due to disagreement among forecasters)
may not be a timely measure of uncertainty. Note that this result is not an artifact of constructing
disagreement measures based on density forecasts: Sill (2014, Figure 1) shows a similar delay.
In particular, Sill (2014) plots the dispersion of the mean one-year-ahead real GDP growth rate
forecasts measured by the inter-quantile range: the first peak in the disagreement does not appear

until the middle of the recession.

INSERT FIGURE 3 HERE

"We focus on quarterly data. See instead Ferrara and Guérin (2015) for a high-frequency analysis of uncertainty

shocks.
'5The magnitudes of Uh4n)e and U;f‘+h‘t are reported on the y-axis on the left while that of disagreement is reported

on the y-axis on the right. The magnitude of disagreement is small. This is due to the fact that, unlike the existing

measures of disagreement on point forecasts, we measure disagreement in probabilities, not in the mean forecast.

11



Panel B in Figure 3 depicts the decomposition of aggregate uncertainty into Knightian un-
certainty and realized risk. The figure suggests that realized risk (measured by Vol ;) was an
important component of uncertainty throughout the last three decades, as was Knightian uncer-
tainty, measured by the mean bias component. Some differences between the two are important to
note, however. The realized risk component was high during the latest financial crisis, and sharply
decreased as soon as the recession was over; Knightian uncertainty (measured by the mean bias
component, By ;) remained persistently high even after the end of the crisis. Thus, overall uncer-
tainty remained persistently high after the end of the latest recession mostly because of forecasters’
errors as opposed to risk being high. The role of dispersion in probability forecasts (Vi4p);) as well
as the co-movement between prediction and realization (Cov, ;) are negligible for the cyclical
dynamics of aggregate uncertainty.

Turning to the ex-ante and ex-post components, depicted in Panel C of Figure 3 together with
the aggregate uncertainty measure (U A

t+ht
quite constant in the 1980s and up to 2007. Thus, movements in uncertainty during that period

), it is interesting to note that ex-ante uncertainty is

cannot be attributed to changes in ex-ante uncertainty. Ex-ante uncertainty does increase during
the latest recession, but only towards its end, and spikes much later than the peak of the recession.
This suggests that measures of volatility in the forecasters’ predictive distributions are, themselves,
not timely measures of uncertainty.

Finally, it is also of interest to investigate how the various components of uncertainty evolve as
the forecasters get closer in time to the realization date, that is, as the forecast horizon becomes
shorter. We separately consider forecasts for h = 1,2,...,7,8 and compare them with the fixed-
event realization. Both uncertainty as well as aggregate uncertainty decrease as the forecast horizon
increases (Panel A in Figure 4, top left and right graphs). It may seem counter-intuitive that
uncertainty decreases at longer horizons; to understand why, we examine its components. Clearly,
disagreement decreases as forecasters get closer to the realization: in fact, disagreement decreases on
average as the horizon decreases (cfr. bottom graph in Figure 4, Panel A). This finding is reassuring,
as it is reminiscent of what Patton and Timmermann (2010) discovered for point forecasts, and
our results show that similar results hold for disagreement calculated on density forecasts. The
mean bias also decreases as the horizon decreases (Panel B in Figure 4). On the other hand, the
dispersion of the density forecasts increases, thus increasing the aggregate uncertainty. The realized

variance and covariance are constant over the horizons, and the latter hovers around zero.
INSERT FIGURE 4 HERE

The most striking patterns are displayed by ex-ante and ex-post uncertainty, depicted in Figure
4, Panel C. Clearly, ex-ante uncertainty decreases monotonically as the forecast horizon decreases;

that is, forecasters’ predictive densities become more spread out when the forecast horizon increases,

12



thus reflecting more uncertainty in the economy when looking at events that are further in the
future. However, there is no clear pattern in ex-post uncertainty. This means that, even though the
forecasters’ predictive densities become tighter as the realization gets closer in time, the uncertainty
in the actual realizations does not diminish, as the size of the forecast errors does not diminish
with the horizon.

Comparing the evolution of the ex-ante uncertainty in Panel C and the dispersion of the aggre-
gate predictive density, V, p; in Panel B, we note that, although forecasters, on average, become
less confident about the future as the forecast horizon increases, their views about uncertainty
does not seem to be updated often for forecasts that are further in the future, thus resulting in
the low variability of the predictive distribution over time. Moreover, as the distribution becomes
more spread out with the forecast horizon, it has a higher chance of including the realization, thus

resulting in a decline in the aggregate and overall uncertainty.

6 Understanding the Measures of Uncertainty in the Literature

and Their Macroeconomic Effects

In this section, we use our decomposition to shed some light on why existing measures of uncertainty
differ from each other. Understanding why they differ provides important insights on which measure
is the most appropriate for a particular analysis.

The top panel in Figure 5 plots Jurado, Ludvigson and Ng’s (2015) uncertainty measure together
with Baker, Bloom and Davis’ (2013) index.!6 Both indices are standardized for comparison. The
figure shows that the former is overall smaller than the latter until 1995, then it becomes overall
bigger, and in particular spikes up earlier than the latter during the latest financial crisis of 2007-
2008. The lower panel plots the decomposition of our aggregate uncertainty index into ex-ante and
ex-post components. The ex-post component is lower than the ex-ante component up to mid-1992,
then it becomes systematically larger, and spikes up around 2007-2008, behaving similarly to how
the Jurado, Ludvigson and Ng’s (2015) behaves relative to Baker, Bloom and Davis (2013). Thus,
it seems that the Baker, Bloom and Davis (2013) uncertainty measure is driven more by ex-ante
uncertainty, while the Jurado, Ludvigson and Ng (2015) uncertainty measure is clearly affected by

ex-post uncertainty, namely uncertainty due to misspecification in the predictions.
INSERT FIGURE 5 HERE

To estimate the effects of the uncertainty and its components on the economy, we estimate a
Vector Autoregression (VAR) that includes (the log of) real GDP, (the log of) employment, the

Federal Funds rate, (the log of) stock prices and the specific uncertainty indices one at a time.

'5We are using Jurado, Ludvigson and Ng’s (2015) one-year-ahead uncertainty index.
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Identification is achieved via a Cholesky procedure, which follows the order in which the variables
are listed. The VAR specification is the same as in Baker, Bloom and Davis (2013), although ours
is at the quarterly frequency, and accordingly we use GDP instead of real industrial production.
We order the variables as in Jurado et al.’s (2015) benchmark specification, i.e. from slow to fast
moving. For completeness, we investigate the robustness of our results in a larger VAR in the
Not-for-Publication Appendix. To better interpret and compare the magnitude of the effects of the
uncertainty indices, the uncertainty indices are standardized by their own means and variances.
Panel A in Figure 6 shows the effects of our uncertainty index on the economy. Clearly, an
increase in uncertainty has recessionary effects: both GDP and employment decrease, as well as
the interest rate and the S&P 500. Panels B and C describe the effects of each of the components
in the decomposition. Panel B shows the effects of a shock to aggregate uncertainty, which is in line
with that of uncertainty since aggregate uncertainty is the main determinant of the total. Panel
C focuses on disagreement; it also decreases employment although by a smaller magnitude; at the

same time, it has no significant effects on the remaining variables.
INSERT FIGURE 6 HERE

Figure 7 shows the effects of uncertainty measured by mean bias, realized volatility and the
dispersion in the probability forecasts. The mean bias and realized volatility appear to have re-
cessionary effects (Panels B and D); dispersion in the density forecasts (Panel C) drives down
employment, while it increases stock prices and output. It is important to note that, in magnitude,
the mean bias and realized volatility have similar macroeconomic impact, though these effects are

statistically significant for the first but not for the second.
INSERT FIGURE 7 HERE

The effects of ex-ante and ex-post uncertainty on other macroeconomic variables are depicted
in Figure 8. They both lead to decreases in employment, interest rates and stock prices of similar
magnitude; an increase in ex-ante uncertainty, however, has a small negative impact effect on GDP,
while the medium run effect is positive and small, and the longer run effect is again negative; the

effects of ex-post uncertainty on GDP are, instead, negative and large.
INSERT FIGURE 8 HERE

Figure 9 compares the results with those in the existing literature; the latter are also obtained
by estimating VARs that include (the log of) real GDP, (the log of) employment, the Federal
Funds rate, (the log of) stock prices, and the alternative uncertainty index, which is demeaned and
standardized as well. The alternative uncertainty indices that we explore (one-at-a-time) include:
Bloom (2009), labeled “VXO”; Baker et al.’s (2013) policy uncertainty index, labeled “BBD”;

14



Jurado, Ludvigson and Ng (2015), labeled “JLN”; and Scotti’s (2013) macroeconomic surprise-

based uncertainty index.
INSERT FIGURE 9 HERE

Panel A in Figure 9 shows that the VXO and BBD indices have similar effects on the economy,
while an increase in uncertainty measured by the Jurado, Ludvigson and Ng’s (2015) index are
qualitatively similar but much larger in magnitude, and, thus, are similar to the effects that we
uncover for our ex-post index. The effects of Scotti’s index are again recessionary for GDP, em-
ployment and stock markets, and lead to an increase in the interest rate. The effects of this index
are small and overall insignificant. The effects of our realized volatility measure are more similar
to those of the VXO.

7 The Dynamics of the Sources of Uncertainty Through the Lens
of a Model

We consider a model of ambiguity which follows Ilut and Schneider (2014). The model is as
follows. We assume that GDP growth, Z,,1, evolves according to an autoregressive model with a
time varying mean, puy:

Zi1 = p2Z¢ + 1y + i1, (10)
where 111 is i.i.d. N(0,02) and g is deterministic such that its empirical sequence converges to
Z = 02 — 02. Consequently, the observed values of

2zt = Zyp1 — p2 2t look like realizations from an i.i.d. process with mean zero and variance ag. For

an i.i.d. stochastic process N(O,oi), where o

all practical purposes, we treat u; as a realization from a stochastic process N (0, JZ). Moreover, p}
and u; are assumed to be independent. Thus, GDP growth is driven by two sources of uncertainty
in the economy: the first source is the unpredictable shocks, wu;11; the second, pj, is a proxy for
ambiguity, as we discuss below.

We assume that the agents in this model know that the data generating process for GDP growth
is autoregressive with persistence p,, and that there are two sources of uncertainty; however, they
do not observe p; and ugy1, even though they know the probability distribution of wit;. They
gather intangible information about pf, which sometimes makes them relatively confident that the
correct forecast of future GDP growth is p,Z;, and sometimes less confident, i.e. the signal is
sometimes less and sometimes more ambiguous. One could think of a situation where the agents
acquire poor quality information or conflicting news from newspapers or professional forecasters.
The ambiguity is modeled by letting agents form their beliefs about GDP growth dynamics based

on the following law of motion:

Zi,t+1 :pZZi7t+/I/i’t+Ut+1, 1=1,2,...,.N (11)
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where pf, € [—a;+, —a;s + 2|a;4|], N is the total number of agents (equal to 100), and wyq is
iid. N(0,02). The bounds on uj, formalize the idea that sometimes agents are more ambiguous
regarding the second source of disturbance to output growth: those situations are associated, in
the model, with a larger value of a;;, which implies a larger set of beliefs and more ambiguity
perceived at time ¢ by agent ¢. Thus, we refer to a;; as the ambiguous component, or Knightian
uncertainty.!”

Furthermore, agents receive signals about ], from the process:
Qi1 — Qi = Pai(@it — @i) + Tai€ii, (12)

where €}, is i.i.d. N (0,1). One can view €, as a signal that the agent gets about the ambiguity
component, whose volatility depends on 0,;. In some periods the signal results in a higher a;;
in such cases, there is more ambiguity and the set of beliefs is larger. In other periods, depending
on the received information, the set can be smaller, thus the agents are less ambiguous about
the stochastic disturbances in the data generating process. Furthermore, we impose parameter
restrictions to ensure that the average ambiguity is less than the total uncertainty about the process
of Zy41: these restrictions are such that a; = n;o, and o04; = 0,0, for n € (0,1) for every agent
i, where n; and o, are parameters (one can think of a; as the unconditional mean and ag’i as the
unconditional variance of the shock to perceived ambiguity). In particular, n; ~ #dN (n, cr?z’ I),
2

where o7, | controls the cross sectional variability of N.18

Finally, when faced with ambiguity, modeled with eq. (12), the agents choose:
iy = min([—ai g, —ai¢ + 2]a;]). (13)
Thus, the effective perceived law of motion for agent ¢ becomes:
Zig1 = paZig + iy + Ug1. (14)

Note that when a; ; is bigger, ambiguity is higher, the set of beliefs is bigger, and the wider interval
implies a lower worst case mean that the agents choose.

Our model is a simplification of Ilut and Schneider (2014): to be precise, they model ambiguity
and risk about the technology process. However, under the assumption of fixed inputs, this would
directly translate into a similar output growth dynamics. Thus, for simplicity, we directly model
the dynamics of output growth and calibrate the parameters of the output growth process, p, and

0, based on an AR(1) model estimated on the quarterly growth rate for the U.S. GDP. On the

"This notion of Knightian uncertainty is similar to that of Ilut and Schneider (2014). We should note, however,

that they assume that the total factor productivity shocks are ambiguous, while we do the same for output growth.
18 Alternatively, one could model the level of ambiguity to be uniformly distributed across the forecasters. This

would attenuate ambiguity.
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other hand, the ambiguity parameters, i.e. p,, n and o,, are borrowed from their posterior mode
estimates with the caveat that their estimates apply to the ambiguity in total factor productivity
rather than output growth. Table 1 summarizes our baseline parameter values. Since p; and ;11
can not be identified separately, the values for their respective variances are assigned arbitrarily.
We let 0, = 0.5, while o, is assigned a value to match the total conditional volatility in the output

growth observed in the data, o,.
INSERT TABLE 1 HERE

We consider four scenarios. In the first three scenarios, there is no cross-sectional heterogene-
ity in ambiguity, i.e. 0%7 ; = 0 and n; = n for every agent; in the fourth scenario we consider
heterogeneity by letting n; # n.

Scenario 1: Ambiguity. We increase the level of ambiguity in the model, i.e. the level of n.
We consider shifting the value of n from 0.2 to 0.8. While the data is generated by equation (10),
the agents forecast output growth using the law of motion in equation (14). In this exercise we
are changing the set of possible values that u; can take: as n increases, both the conditional and
unconditional means of a;41 increase — see equation (10), and the signals the agents get about the
additional source of uncertainty, denoted by the set [—as, —a; + 2|a¢|]), become noisier.

Scenario 2: Risk and ambiguity. We increase the level of risk by increasing the value of oy,
from 0.3 to 1. In this experiment the model is still described by eq. (10), the perceived law of
motion is described by eq. (14), while learning under ambiguity occurs under eq. (12). In this case,
increasing the level of uncertainty increases both the objective and perceived level of uncertainty.
However, given that n; = n, @ = no, and o, = 0,0, for n € (0,1), where 02 = 02 + 02 | then both
the level of ambiguity (a) and the uncertainty about ambiguity (o,) increase. Thus, an increase in
oy, increases both risk and Knightian uncertainty in the model.

Scenario 3: Risk but no ambiguity. We increase the level of risk as in Scenario 2, yet change the
model such that the agents are forecasting based on the true model: p;* = pi. Thus, there is no
ambiguity. In other words, the true model is still the one described by (10), while the model used
for forecasting is not determined by equation (14), but instead by equation (10) itself. The design
in this scenario intends to explore how the ex-post and overall uncertainty evolve when there is no
ambiguity.

Scenario 4: Disagreement. We increase the variance of ambiguity across agents in the model,
i.e. o, 7. We consider varying the value of o, ; from 0.5 to 1 and letting po; ~ N (pq4,0.01) be
heterogeneous across agents. This way, agents differ both because the volatility of the signal they
receive and its persistence. Note that, in this case, agents disagree on the level of ambiguity, al-
though the aggregate level of ambiguity in the data is unchanged; that is, on average, a equals no,

which does not change as o, 1 increases.
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INSERT FIGURE 10 HERE

We simulate the model for 254 periods for each of these scenarios (using an additional 100
periods as a burn-in sample); we use the simulated data to construct the components of our proposed
decompositions and plot them over time.

Panel A in Figure 10 depicts the results for Scenario 1. The increase in ambiguity increases
the Mean-Bias and the Ex-Post components of uncertainty, as well as the overall uncertainty. On
the other hand, there is no change in either the perceived or the realized volatility, that is, the
Ex-ante and Realized Risk components, respectively. This follows from the fact that: (i) the data
generating process has not changed, and, thus, the realized variance (02) has remained the same;
and (ii) as eq. (14) suggests, the overall level of the ex-ante variance (¢2) does not depend on n.

Panel B shows the simulation results for the second scenario. Here the increase in o, increases

2

2 itself) and ex-post risks. It is also important that there is feedback

the measures of ex-ante (o
from risk to ambiguity. As discussed in the description of Scenario 2, both the mean (@) and the
variance (02) of ambiguity are affected by the increase in the overall risk. Consequently, the overall
measure of uncertainty increases due to both sources: increase in risk and increase in ambiguity.

Panel C shows the dynamics of uncertainty and its components when there is an increase in risk
in a model with no ambiguity. In this setup it appears that both ex-ante and ex-post components
of uncertainty increase. However, this increase is proportional such that the average level of overall
uncertainty increases due to the upward shift in ex-ante uncertainty and its volatility mimics that
of ex-post uncertainty (in the right panel). Thus, comparing Panels B and C suggests that, in the
presence of ambiguity, uncertainty increases proportionally more than the increase of risk.

Finally, Panel D shows the dynamics when there is an increase in the cross-sectional dispersion of
ambiguity while the overall level of ambiguity remains unchanged. Note that the component that is
most largely affected by the increase in the cross-sectional dispersion in ambiguity is disagreement,
as we would expect.

To summarize, our simulations show that the increase in ambiguity can increase the ex-post
component, as well as the mean-bias, thus resulting in an overall increase in uncertainty. The
increase in the true volatility of the DGP increases both the realized volatility as well as the
ex-ante volatility measures. However, the increase in the overall uncertainty affects the ex-post
volatility and mean-bias as well. In the absence of ambiguity, the impact on the bias is negligible
(it is more similar to noise), thus the increase in the aggregate uncertainty reflects the increase in
the ex-post volatility. On the other hand, the increase in the ex-post uncertainty is twice as much
the increase in the ex-ante uncertainty, such that the resulting measure of aggregate uncertainty

still reflects the increase in the ex-ante uncertainty. Now, in the presence of ambiguity, on the
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other hand, the bias goes up and the ex-post uncertainty goes up proportionally more, such that
the aggregate uncertainty reflects the increase in all sources of uncertainty.

It appears that our simulation results could be reconciled with our empirical findings. The
proposed model has a potential to generate an ex-ante uncertainty measure that is smoother than
the realized variance. Moreover, the model has potential to generate relatively volatile measures of
bias, as well as ex-post uncertainty. Our simulation results also suggest the existence of ambiguity
in the empirical setup as the aggregate uncertainty does not move proportionally with the variance:

in fact, the predominant sources of aggregate uncertainty are the Knightian measures.'”

8 Inflation Uncertainty

In this last section, we focus on inflation uncertainty. Understanding inflation uncertainty is impor-
tant for several reasons. High uncertainty about future inflation, possibly spurred by high inflation
itself, may have effects on real variables (Ball, 1990). For example, Gurkaynak and Wright (2012)
and Wright (2011) have argued that inflation uncertainty matters because it might help explain
the behavior of bond risk premia, and therefore help economists understand why monetary policy
differently affects short term rates (the instrument of monetary policy) and the long term rate
(the rate that is of interest for investors and consumers). In fact, Wright (2011) has found a pos-
itive and strong relationship between long-term inflation uncertainty and bond term premia in a
large cross-section of countries. The important policy implication of Wright’s (2011) findings is
the possibility that eliminating long-run inflation uncertainty might facilitate the transmission of
monetary policy to the economy. Also, D’Amico and Orphanides (2014) consider ex-ante measures
of risk for inflation forecasting and Caporale et al. (2012) have shown that inflation uncertainty
has decreased in the Euro area, possibly due to the fact that inflation decreased steadily since the
beginning of the Euro.

Figure 11 depicts our measure of uncertainty (Panel A) and the decompositions (Panels B,C).
Inflation uncertainty was high in the early 1980s, possibly due to oil price shocks, and decreased
substantially afterwards; typically, it tends to be high around recessions. The behavior over time
of uncertainty is very different from that of disagreement, which instead does not necessarily peaks
around recession times. While the volatility component is pretty constant over time, the major-
ity of the fluctuations in aggregate inflation uncertainty are associated with the bias component
and the ex-post components; interestingly, ex-ante inflation uncertainty seems to have decreased
monotonically since the early 1980s.

Our empirical results suggest that the most effective policies to decrease inflation uncertainty

YNote that it is possible that we underestimate the effect of the Knightian uncertainty, since it is possible that

the data generating process, thus realized volatility, can also change in response to ambiguity.
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are those that influence ex-post uncertainty. In other words, policies should aim at ensuring that
ex-post realizations of inflation are in line with the average expected inflation (for example, by
minimizing shocks to inflation), not those that decrease the agents’ ex-ante uncertainty (i.e. not

those that affect the agents’ expectation formation process), although the latter can also be effective.

INSERT FIGURE 11 HERE

9 Conclusion

This paper proposes an alternative measure of uncertainty based on survey density forecasts. The
new measure has the advantage that it can be used to decompose uncertainty into components that
can help researchers understand what existing uncertainty indices measure. In particular, our mea-
sure of uncertainty can be decomposed into aggregate uncertainty and disagreement, and aggregate
uncertainty can itself be decomposed into Knightian uncertainty and realized risk. The latter inher-
ently measure different things, have specific business cycle dynamics and different macroeconomic
impact. Moreover, these sources of uncertainty resolve differently across prediction horizons.

Given that our proposed uncertainty index is an ex-post measure of uncertainty, we also de-
compose it into a component that only reflects ex-ante uncertainty, which we can relate to existing
measures of uncertainty based on the inter-quantile spread of the forecast distribution, and a com-
ponent that measures ex-post uncertainty. Our analysis uncovers that some existing measures of
uncertainty capture ex-ante uncertainty (such as existing measures of uncertainty based on policy
uncertainty), while others capture ex-post uncertainty.

We also investigate the effects of the sources of uncertainty on the macroeconomy. We find
that, while an increase in overall uncertainty has recessionary effects, the effects of the various
components of uncertainty differ. For example, disagreement is only a small portion of the overall
uncertainty, and may both underestimate and lag the actual degree of uncertainty in the economy;
thus it may not be a timely measure of uncertainty. In addition, both realized risk and Knightian
uncertainty were important components of uncertainty over the last three decades, although the
former sharply decreased as soon as the financial recession of 2007-2008 ended while the latter
remained high even after the end of the crisis. This suggests that the high overall uncertainty that
persisted after the end of the latest recession was mostly due to agents’ being unable to assign the
correct probability to the economic outcomes and disagreeing on them, rather than because risk
was high. Simulation results from a stylized macroeconomic model suggest that the behavior of
uncertainty and its components is largely reconcilable with a macroeconomic model with ambiguity.
Ambiguity can be a source of its own in increasing the overall level of uncertainty; alternatively, it

can also act as an amplifying mechanism for the increase in the level of risk.

20



References

Baker, S.R., N. Bloom, and S.J. Davis (2013), “Measuring Economic Policy Uncertainty,”
mimeo.

Baringhaus, L. and C. Franz (2004), “On a New Multivariate Two-Sample Test,” Journal of
Multivariate Analysis 88, 190-206.

Ball, L. (1990), “Why Does High Inflation Raise Inflation Uncertainty?” Journal of Monetary
Economics, 371-388.

Bloom, N. (2009), “The Impact of Uncertainty Shocks,” Econometrica 77(3), 623-685.

Caporale, G., L. Onorante and P. Paesani (2012), “Inflation and Inflation Uncertainty in the
Euro Area,” Empirical Economics 43(2), 597-615.

D’Amico, S. and A. Orphanides (2014), “Uncertainty and Disagreement in Bond Risk Premia,”
Federal Reserve Bank of Chicago Working Paper 2014-24.

Ferrara, L. and P. Guérin (2015), “What Are The Macroeconomic Effects of High-Frequency
Uncertainty Shocks?,” EconomiX Working Papers 2015-12, University of Paris West - Nanterre la
Défense, EconomiX.

Giannone, D., L. Reichlin and D. Small (2008), “Nowcasting: The Real-time Informational
Content of Macroeconomic Data,” Journal of Monetary Economics, 55(4), 665-676.

Giordani, P. and P. Soderlind (2003), “Inflation Forecast Uncertainty,” European Economic
Review 47, 1037-1059.

Gneiting, T. and A.E. Raftery (2007), “Strictly Proper Scoring Rules, Prediction, and Estima-
tion,” Journal of the American Statistical Association 102 (477), 359-378.

Gurkaynak, R. and J.H. Wright (2012), “Macroeconomics and the Term Structure,” Journal of
Economic Literature 50(2), 331-67.

Hersbach, H. (2000), “Decomposition of the Continuous Ranked Probability Score for Ensemble
Prediction Systems,” Weather and Forecasting 15, 559-570.

Iut, C.L. and M. Schneider (2014), “Ambiguous Business Cycles,” American Economic Review
104(8), 2368-99.

Jurado, K., S. Ludvigson and S. Ng (2015), “Measuring Uncertainty,” American Economic
Review 105 (3), 1177-1216

Knight, F.H. (1921), Uncertainty and Profit. Boston: Houghton Mifflin.

Lahiri, K. and X. Sheng (2010), “Measuring Forecast Uncertainty by Disagreement: The Missing
Link,” Journal of Applied Econometrics 25, 514-538.

McCracken, M.W.; M.T. Owyang and T. Sekhposyan (2015), “Real-time Forecasting with a
Large, Mixed Frequency, Bayesian VAR,” St. Louis Fed Working Paper 2015-030A.

Patton A. and A. Timmermann (2010), “Why Do Forecasters Disagree? Lessons From the

Term Structure of Cross-Sectional Dispersion,” Journal of Monetary Economics 57(7), 803-820.

21



Rossi B. and T. Sekhposyan (2015), “Macroeconomic Uncertainty Indices Based on Nowcast and
Forecast Error Distributions,” American Economic Review Papers € Proceedings 105(5), 650-55.

Rossi B. and T. Sekhposyan (2016), “A Macroeconomic Uncertainty Index for the Euro Area,”
MIMmeo.

Scotti, C. (2013), “Surprise and Uncertainty Indexes: Real-time Aggregation of Real-Activity
Macro Surprises,” Federal Reserve Board International Finance Discussion Paper 1093.

Sill, K. (2014), “Forecast Disagreement in the Survey of Professional Forecasters,” Philadelphia
Fed Business Review Q2-2014, 15-24.

Stock J.H. and M.W. Watson (1999), “Business Cycle Fluctuations in U.S. Macroeconomic
Time Series”. In: J. Taylor and M. Woodford (eds.), Handbook of Macroeconomics, North Holland,
Vol. 1A, 3-64.

Stock J.H. and M.W. Watson (2012), “Disentangling the Channels of the 2007-2009 Recession,”
Brookings Papers on Economic Activity Spring, 81-135.

Wright. J. H. (2011), “Term Premia and Inflation Uncertainty: Empirical Evidence from an
International Panel Dataset,” American Economic Review 101 (4), 1514-34.

Zarnowitz, V. and L.A. Lambros (1987), “Consensus and Uncertainty in Economic Prediction,”
Journal of Political Economy 95(3), 591-621.

22



10 Tables and Figures

Table 1: Baseline Parameter Values
p- | 0.625 | Estimated from an AR(1) model fitted to GDP growth
Pa | 0.887 | Ilut and Schneider’s (2014) mode
n | 0.995 | Ilut and Schneider’s (2014) mode
oy | 0.780 | Estimated from an AR(1) model fitted to GDP growth (o)
o, | 0.500 | Arbitrary, as the parameter is not separately identified
op | 0.134 | Ilut and Schneider (2014) mode

Note: The table reports the parameter values used in the benchmark simulations.

Figure 1: Brier Score Illustration
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Figure 2. The Survey of Professional Forecasters Data: GDP Growth

Panel A: Current Year Forecasts Panel B: Next Year Forecasts
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Note: The figure shows the means and quantiles of the SPF’s current year and next year predictive
densities, as well as the constructed fixed horizon four-step-ahead predictive density. The four-step-ahead

density is constructed from the SPF current year and next year density forecasts based on eq. (9). Panel C

also shows the realized value of the GDP growth.
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Figure 3: Decomposing Uncertainty in GDP
Panel A: Uncertainty, Aggregate Uncertainty and Disagreement
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Figure 3: Decomposing Aggregate Uncertainty: GDP
Panel B: Knightian Uncertainty Vs. Risk Panel C: Ex-Ante Vs. Ex-Post
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Note: Panel A of Figure 3 depicts the evolution of uncertainty, aggregate uncertainty and disagreement
(eq. 5) over time. Panels B and C show the evolution of the components of aggregate uncertainty based on

eq. (7) and eq. (8), respectively.
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Figure 4: Decomposition of Uncertainty Across Horizons

Panel A: Uncertainty, Aggregate Uncertainty, Disagreement
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Note: Panel A shows uncertainty, aggregate uncertainty and disagreement over time. Panels B and C

show the components in decompositions in eqgs. (7) and (8), respectively.
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Figure 5. Comparison of Uncertainty Measures
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Note: The figure compares the Jurado, Ludvigson and Ng (2015) and Baker, Bloom and Davis (2013)
uncertainty indices (top panel) with the ex-ante and ex-post components of our uncertainty measure, eq.

(8), depicted in the bottom panel.
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Figure 6. The Effects of Uncertainty on the Economy

Panel A: Uncertainty Panel B: Aggregate Uncertainty
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Note: The figure shows the impulse responses of uncertainty, aggregate uncertainty and disagreement

shocks. The components are calculated as in eq. (5) All uncertainty measures have been standardized.
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Figure 7. The Effects of Uncertainty on the Economy

Panel A: Aggregate Uncertainty Panel B: Mean Bias
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Note: The figure shows the impulse responses of the aggregate uncertainty and its components (mean
bias, dispersion and realized risk measures) based on eq. (7). All uncertainty measures have been standard-

ized.
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Figure 8. The Effects of Uncertainty on the Economy
Panel B: Ex-Ante Uncertainty

Panel A: Ex-Post Uncertainty
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Note: The figure shows the impulse responses to a one standard deviation shock in ex-ante and ex-post

measures of uncertainty based on eq. (8). All uncertainty measures have been standardized.
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Figure 9. The Effects of Uncertainty on the Economy - Alternative Measures
Panel A: VXO Panel B: BBD
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Note: The figure shows the impulse responses for the following uncertainty measures: VXO, JLN, BBD

and Scotti. All uncertainty measures have been standardized.
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Figure 10: Simulation Results
Panel A: Scenario 1 - Changing the Level of Ambiguity
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Panel C: Scenario 3 - Changing the Level of Risk in the Model with no Ambiguity
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Panel D: Scenario 4 - Increasing Cross-Sectional Dispersion in Ambiguity
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results described in more detail in Section 7; Panels A, B, C and

D corresponding respectively to Scenarios 1, 2, 3 and 4, respectively.
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Figure 11: Decomposing Inflation Uncertainty
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Figure 11: Decomposing Aggregate Inflation Uncertainty
Panel B: Knightian Uncertainty Vs. Risk Panel C: Ex-Ante Vs. Ex-Post
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Note: Panel A depicts the evolution of uncertainty, aggregate uncertainty, as well as disagreement (eq.
5) over time. Panels B and C show the evolution of the components of uncertainty based on eq. (7) and eq.

(8), respectively.
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Appendix A. Proofs

The appendix provides the proofs for the results in the paper. For simplicity, we write the proof
for the unconditional expectation.

Proof of Eq. (4).

LN
E N ; [wt+h (r) — Pst+h|t (7">]2
1 Y 2
=F N Z Toyh (1) = Pegnle (1) + Pegenje (T) = Do tthlt (T)] ]
s=1
N
=F (Jif Z Tyyn (T) = Pegn)t (7’))2 +2 (@n (1) = peenie (1) (Peanie (1) = Psgene (r))})
s=1
> 1 N 2
+ N ; pt+h|t — Ds,t+h|t (7“)) }
1 Y 1 <
=F Z Tegn (1) = Prynpe (1)) | +2E N Z Toin (1) = Peynfe (7)) (Pegnje (1) = Ps gy (T))]
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W ,
+ F N Z (pt+h|t (T) — Ds,t4-h|t (T‘))
L s=1
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Proof of Eq. (6).

uln ()= E [(mh (r) = prene (7 >)2} = B (w4n (r) = B (we4n (1) + E (@een () = prage (1)
=L [(fL‘Hh E (@4 (r 2} [ (@t4h (1) = Pryhpe (7"))2}
+ B 2 (2440 (1) = B (@440 (1) (B (2440 (1) = Pegnje ()]
= B ([peese (1) = B @en ()]*) +V (@4 (1)) = 2C00(@iin (1) prasy (1),
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where the last line follows from the fact that

E 2 (z4n (1) = E (g (r) (B (@448 (1) — Degppe ()]

=2 [(@44n (r) — E (@p4n (1) (B (2en (1) = pgnge (7)) ]

=2F [-Tt—i—h (r) E (w44 (1)) = @on () Prange (r) = B (won (1) + Prange (r) Bz (T)]

= 2F [pisnje (7) Expyn (1) = Tein (1) Pt (1)) = 2 [Epignpe (1) Expyn (1) — E(Tyn (1) Pgnge (1))

= —2Cov(x4ip (1) Pi+hlt (r))-

Furthermore, note that ([pwh\t (r) — E(x4qp (r) 2) ( th‘t (r )) — E(x44p (7“))]2>+V(pt+h|t (r)).

tnmore detail, £ ([prsne (r) = B (z1n (M)]*) = B ([peage (1) = E@rgne (1) + E@rgne (1) = E (@een ()]°)
= Var(pepns () + E(E@psne () = E (@10 (1))
+2F [(Pt+h\t ( ) (pt+h\t ( ))) (E(Pt+h|t (7”)) - F ($t+h (T)))]
r)

= Var(peipe (r) + E(EPrne (r) =

Proof of Eq. (8). Our measure of uncertainty is the negative of the CRPS (Gneiting and
Raftery, 2007). Note that CRPS(F,yip) = — [*o — Hyeen < r})2dr = Ut+h, where
F(r) is the aggregate predictive distribution. Let G(r ) denote the ideal distribution, i.e. G (r) =
1{ysrn < r}; then by Lemma 2.2 of Baringhaus and Franz (2004), we have Ut’ih = [T (F(r) —
Hyren < r1H2dy = EYi4en — Y1l — 3EY1e0n — Yorin| — $E|Y1e4n — Y2040, where Y3y,
and Ys ¢y, are ii.d draws from F', while y; 444 and yo 44y are iid. draws from G (r), and both
of these variables have finite expectations. Given Lemma 2.1 of Baringhaus and Franz (2004),
Elyit+n — Yit4n| = ffooo F(r)(1 —G(r))dr + ffooo G(r)(1 — F(r))dr. Now for y1 445 and yas4p, we
have Elyi i — Youen| = 2 [T, G(r)(1 = G(r)dy = 2 [ Hyern < r}(1 — Hyeen < r})dy = 0,
where the last equality follows from the fact that, for a particular value of r, either 1{y;4, <7} or

1 — H{yrsn < r} will be zero, and, thus, the product will be zero. Therefore,

o0
1
Uity = / (F(r) — Yypen < r})?dr = E|Y140n — Yra4n] — §E|Y1,t+h — Yo 14l (15)

—o0
This means we can rewrite aggregate uncertainty as the sum of expected absolute distance measures
of random variables coming from the predictive distribution, and that coming from the predictive
distribution and the true distribution which generates the realization. If F(r) is the Gaussian
distribution, i.e. if Yiip ~ tdN (piyip, O't2+h), then by the property that the difference of the i.i.d
normal random variables is distributed normally (in this case centered around zero with a variance
of 202 " ,), and the fact that the absolute value of a mean zero random Normal variable has a

half-normal distribution with mean 2‘:}# , we have

1 O¢+h
SEWYitan = Yopun| = ) (16)

VT
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To obtain E|Y;1p —ysrn|, we use the properties of Dirac delta function. We denote the PDF of ;1
by a Dirac delta function 6(r — ys15). From the properties of the Dirac function, E(yi1n) = yisn
and Var(yi1p) = 0. Then, Y1 4n —v144n ~ N(fbtth — Yt 0't2+h). By property of the folded Normal

distribution, we have:

h — Yt+h h — Yt+h
E‘Kﬁ+h - yt+h‘ = O14n2¢ <—Mt+t+) + (Mt+h - yl,t+h) (1 - 29 (—M>> : (17>
Ot+h Ot+h

Substituting (17) and (16) into (15), we get the result:

Yt+h — Ht+h Yt+h — Ht+h Ot4h
UA, =12 = — 20 ( —/————— | -1 — . 18
t+h [ Ot+hQ < o > + (Yith — tith) < < i > )] N (18)

“Ex-post” “Ex-ante”

Appendix B. Data

As the main text indicates, the fixed-horizon forecasts are constructed as a weighted average
of the current and next year forecasts. Figure Al shows the number of forecasters that provided
forecasts for both, current year and next year, as well as the number of forecasters that have
provided forecasts for either one of the years, but not both. As the figure shows, the latter group is
not large. By limiting our attention to forecasters that provide forecasts for both years we loose 10%
of the total number of observations. The maximum per period loss amounts to 30% of forecaster
observations. In our sample we have 239 unique forecasters. Out of those, 108 have been providing
forecasts more than twelve times. The sample has 31 forecasters that have provided density forecast
for 8 or more but less than 12 times, while 37 of them provided forecasts for 4 times and more,
but less than 8 times. Thus, the majority of the forecasters in our sample are repeated forecasters,
which increases the confidence that our results are not driven by outliers.

D’Amico and Orphanides (2014) highlight the role of approximations in individual predictive
distributions. The idea is that many forecasters tend to put a lot of weight on a few bins and zeros
on other bins. D’Amico and Orphanides (2014) argue that this could be forecasters’ true perceived
uncertainty. However, as they suggest, it is also possible that forecasters just use approximations
and lump small probabilities into the adjacent bins. To shed some light on this issue, in Figure
A2, Panel 1, we show the percentage of forecasters that put probabilities into one bin, two bins
and three bins. In general, forecasters with all the probabilities on one bin and two bins are few.
However, a non-negligible proportion of forecasters puts all the probabilities on three bins. The
proportion of these forecasters is higher prior to 1992:1. This is explained by the structure of the
bins at that point. In our sample period, the bin structure for GDP/GNP growth has changed
three times. Between 1981:IIT and 1991:IV there were 6 bins covering [<-2 -2 to -0.1 0 to 1.9
2t039 4t059 6+], between 1992:1 and 2009:I the bins were [<-2 -2 to-1.1 -1to-0.1 0
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t009 1tol9 2t029 3to39 4to49 b5tob59 64|, while since 2009:I1 the bins have
been covering the following intervals [<-3 -3 to -2.1 -2to-1.1 -1to-0.1 0to09 1 to
1.9 2t029 3t039 4t049 5to59 6+]. Note that in the beginning of the sample the
bins have been fairly wide, not giving forecasters opportunities to differentiate among bins. Given
that we use a Gaussian approximation, in order to strive for accuracy we adjusted the bins in the
period between 1981:111 and 1991:IV. The modified grid doubles the number of bins in that period,
splitting the original probabilities in each bin uniformly over the newly created ones. Effectively
the grid structure in that period becomes the same as in the period between 1992:1 and 2009:1. The
summary of the number of forecasts with probabilities on one, two and three bins with the modified
grid specification is provided in Figure A2, Panel B. The figure shows that, by construction, there
are not many forecasts with probabilities on less than or equal to three bins left in the period
prior to 1992:1. Moreover, we discarded densities that put all the probability mass on one bin in
the calculations. The second source of approximation error that arises when working with SPF
probability forecast histograms is the open ended nature of the first and last intervals. In practice,
we close these intervals. We assume that the open intervals have the same length as the rest of
the intervals in the respective grids. Panels C in Figure A2 shows the proportion of forecasters
assigning a probability value on the leftmost and rightmost bins in the survey. On the one hand,
these proportions are not negligible, and our choice of dealing with the leftmost and rightmost
intervals might have some impact on the overall results. On the other hand, Panel D suggests that
the probability value associated with these open intervals is small. Thus, closing the open intervals
should not induce a large approximation error. Lastly, since we approximate the histograms with a
Gaussian distribution, we use the mid-point approach: when fitting a Gaussian kernel we associate

all the probability mass with the midpoint of the interval.

Figure Al: Forecasters with Current Year and Next Year Forecasts
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Figure A2: Bin Statistics

Panel A: Forecasts without Grid Adjustment Panel B: Forecasts after Grid Adjustment
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Not-for-Publication Appendix
(For Online Publication Only)

A.1 Descriptive Analysis of Inflation Forecasts

Figure I. The Survey of Professional Forecasters Data: Inflation
Panel B: Next Year Forecasts

Panel A: Current Year Forecasts
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Note: The figure shows the quantiles of the SPF four-step-ahead predictive density, its mean, as well as

the realized value of inflation. The four-step-ahead density is constructed from SPF’s current year and next

year density forecasts based on eq. (9)
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A.2 Reliability and Resolution Analysis

A

Note that an additional, interesting decomposition for u; Lt

phy (1973):

(r) can be obtained following Mur-

“;:4+h|t (r) > RELyip; (r) — RESy gy (r) + V (zgn (1) [SE_g) (19)

where:

® RELy py(r)=E <[pt+h|t (r) — E (z4n (1) |Desn)t (7"))]2 \%LR) measures the reliability of the
forecast and scores the calibration of the forecast. A forecast is said “reliable” when the ob-
served frequency is consistent with the probabilistic forecast made for a given event. For
instance, forecasts that predict a probability of recession of 30 percent will be reliable if the
economy effectively enters a recession 30 percent of the time every time such a forecast is
made. Hence, reliability measures the unconditional (un)biasedness of the probabilistic fore-
casts. Because the term is expressed as a squared error, the smaller the calibration error, the

better (i.e., the lower) the Brier score.

® RES; p(r) = E ([E (Zean (7) [Pt (1) — B (@4 (1"))]2 |3§_R> is the resolution, i.e. the
average squared differential of the conditional and unconditional means of the observed out-
comes. It captures the “decisiveness” of forecasts by comparing the forecast probability and
the long-term average of the underlying process. The larger the term, the lower the Brier

score.

As we show below, Eq. (19) holds up to an approximation error that involves within bin
variation.

The decomposition can be estimated as follows.

Reliability is estimated as follows. For each ¢, determine which of the forecast bins p, ), (r) falls
into. Let {pg?h‘ . (T)} be the collection of probabilities in the k-th bin and let pﬂm ; (r) denote the
unconditional expected value over the bin. We estimate pﬂm , (r) using a Uniform distribution over
the bin, so that pt}ih' , () is the midpoint of the bin.? In addition, let the number of probabilities
in each bin be ny. Let T be the average of the realizations conditional on the forecaster having
made the probability forecast associated with the collection of probabilities in bin k, {pii)h‘ . (7")}
Reliability is the average square calibration error, that is,

20Tn the 3-terms decomposition that we discuss here, we abstract from within bin variance and within bin covariance;
thus, the unconditional expected value over the bin is indeed the midpoint of the bin and all forecasts in the bin
are imposed to be equal to the midpoint (so their average is also the midpoint). We derive a 5-terms decomposition
which includes within bin variance and within bin covariance (Stephenson, Coelho and Joliffe, 2008). In that case,
the reliability will be calculated using the average forecast in the bin without imposing that all forecasts in the bin
are equal. That is, ﬁii)h‘t (r) (which is the average of the collection of probabilities in the k-th bin, {pgi)h‘t (r)})7
replaces ptE_‘_h‘t (r) in eq. (20).
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K 2
REL() = 2> e (B ()~ 70 (1) (20)
k=1

Thus, reliability measures the squared deviation of the predicted probability from the observed
outcome conditional probability of the event. This effectively tells the user how often (as a per-
centage) a forecast probability actually occurred. In theory, a perfect forecasting model will result
in forecasts with a probability of a% being consistent with the eventual outcome a% of the time.
Note that a forecast is reliable if the average square calibration error (REL) is small. Figure II
provides intuition to understand reliability. The x-axis reports the forecast probability,?! while
the y-axis reports the observed relative frequency. A reliable forecast would be the 45-degree line,
where the observed frequency of realizations equals the forecast probability; the data clearly show

departures from reliability in our sample.

Figure II. Reliability Diagram
ReliabilityDiagram for SPF Forecasts (CY GDP growth)
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Notes. The figure plots the reliability diagram for SPF forecasts of current year (CY) GDP growth.

Resolution is the squared average difference between the conditional mean (given the forecast)
and the unconditional mean: RES(r) = 7 25:1 ng (T () — T (r))? . Note that good forecasts have
high resolution.

Figure III shows the evolution of the components of the alternative decomposition over time.??

2IThe forecast probability is the mid-point of the bin in the forecast distribution.
22Finally, note that the practical implementation of the Brier score involves “binning”. Binning smooths the data

and makes them less noisy, as larger bins limit the “sparseness” problem (Stephenson et al., 2008). Some information

is lost, however, by approximating continuous probability densities with a discrete number of bins.
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Figure III. Aggregate Uncertainty, Reliability, Resolution and (Realized) Risk

Bias/Variance Decomposition
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Notes. The figure displays Aggregate Uncertainty, Reliability, Resolution and Realized Risk.

Proof of eq. (19). In practice, the Murphy decomposition requires partitioning the range of
forecasts — essentially, the [0,1] line — into K sub-segments. Let r be a number along the real line;
let p*) denote the average probability in segment ;23 and let n; denote the number of forecast

probabilities that fall in the k-th sub-segment, for £ = 1,..., K. Given all forecasts in the sample,

23 Alternatively, one could consider ﬁ(k) as the midpoint of the k-th segment
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the Brier score can be broken down as follows:

K ng

T
1 2
TZ[mt-i-h( G ZZ l}gi)h( ) — pgi)mt( )
t=1 k: 1j5=1
ST ) (*) (®) (®) (*) ")
_ _ _ _(k
*ZZ xtih(r) — Ty (r) + T (r) — pt+h\t( )+pt+h|t( r) = ptirh|t
k=1j=1
ST 0) ® N ) (4]
*ZZ xtih(r) — Ty (r } Z [xt+h t+h|t( )}
k=1 j=1 k=1 j=1
s [ @ ]2
+= ZZ pt+h\t< )_ptihu(r)}
k 1j=1
S [ O) (*) (®) (®)
+ = ZZ xtih(r) _ft+h(r)} |:ft+h( ) — pt+h|t( )}
k 1j=1
S ' k k j
+ 233 [0~ 70 [0 — )]
Tz 1j=1
ST () (®) (*) (*)
+= ZZ ptih\t( )_ﬁt+h|t(7“)} [ft+h(r) _ﬁt+h|t(7ﬂ)}
k 1j5=1
k k
*ZZ[ t+h t+)h<7")} + TZZ [x§+)h( ) — P§+)h|t( )}
k=1 j=1 k=1 j=1
s [ Ak
+ = ZZ [pt+h\t pt+h|t( )}
k: 1j=1
R ) (k) )
+ = ZZ [ Ty (7 t—i—h(r)} [pt+h(r) _ptihu(r)} .
k 14=1
We can already recognize the reliability (REL) in the second term of this decomposition:
K ng
1 _ (k) 2
REL(r =7 Z [$t+h t+h\t(r)]
k=1 j=1
1y (k) ~&) 3] 91
= 2 2 [T =Bl 0] (21)
k=1
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The first term can be expressed as follows:

K ng K ng

ZZ[ t+h t+h ] ZZ[ t+h )+$( ) 7&)}1( )}
k 1j5=1 k: 1j=1
1 K ng ) B 9 1 K ng 3 ®) 9
T ;; [ t+h(r) - m(r)} + T ;]21 ["E(T) - mt+h( )]
=59 > [o2(0) = 3] [#() — 2, ()]
=1 j=1
1< 9 1 K (k) 2
= 7 D lwean(r) ~FE)P - 5 me [70) ~ 7, ()]

Note that because the outcome variable z is binary, the uncertainty term can be expressed asV (mt+h (r) |3t R) =

Z(r)(1 —Z(r)). To summarize, we have decomposed the Brier score in the following way:

Z Tepn(r pt+h|t(7")]2 =V ($t+h (r) Bi—R) + REL(r) — RES(r)
t 1

Lo [ G ]2
- T ZZ [pt+h|t( ) — pt+h\t< )]
k=1 j=1

[wii)h(r) _fgi)h(r)} [ngi)h( ) - pgmt( )] -

The last two terms measure the variance of forecasts within the sub-segments and the co-movement
between forecasts within a segment and their corresponding outcomes. The decomposition therefore
writes:

1 X

T ;[xt+h(r) = peenp()]> =V (2e4n () 1S{_g) + REL(r) — RES(r) + WSV (r) + WSC(r),
Remark that the last two terms equal zero when all forecasts within the same segment are assumed
identical. Because WSV (r) and WSC(r) are quantitatively very small in the data, we will work

under the simpler decomposition:

T
1
Z Tpn (T pt+h|t(7')]2 ~V ($t+h (r) ‘gi—R) + REL(r) — RES(r),
=

as per the definitions that we have written. m
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A.3 Results for the Large-Dimensional VAR

This section shows the robustness of our results to a mid-size 11 variable VAR as considered

in Jurado, Ludvigson and Ng (2015) specified in the spirit of Christiano, Eichenbaum and Evans
(2005). The VAR (11) is in the following variables: log(real GDP), log(employment), log(real

consumption), log(PCE deflator), log(real new order), log(real wage), hours, federal funds rate,

log(S&P 500 Index), growth rate of M2, and various uncertainty indices discussed in the paper.
The variables are downloaded from the 2015-11 version of the FRED-QD (Quarterly Database

for Macroeconomic Research) discussed in McCracken and Ng (2015). The labels on the impulse

responses carry the mnemonics of the variables in the database described in Table I.

Table I. Description of Variables Included in the VAR

Variable Mnemonics Description

real GDP GDPC96 Real Gross Domestic Product, 3 Decimal (Billions of Chained 2009 Dollars)

Employment PAYEMS All Employees: Total nonfarm (Thousands of Persons)

Real Consumption | PCECC96 Real Personal Consumption Expenditures (Billions of Chained 2009 Dollars)

PCE deflator PCECTPI Personal Consumption Expenditures: Chain-type Price Index (Index 2009=100)

real new order AMDMNOx | Real Manufacturers’ New Orders: Durable Goods (Millions of 2009 Dollars),
deflated by Core PCE

real wage AHETPIx Real Average Hourly Earnings of Production and Nonsupervisory Employees:
Total Private (2009 Dollars per Hour), deflated by Core PCE

hours HOANBS Nonfarm Business Sector: Hours of All Persons (Index 2009=100)

federal funds rate | FEDFUNDS | Effective Federal Funds Rate (Percent)

S&P 500 Index S&P 500 S&P’s Common Stock Price Index: Composite

M2 M2REALX | Real M2 Money Stock (Billions of 1982-84 Dollars)

The impulse responses to shocks in the uncertainty indices are displayed in Figures IV-VII.

The figures show that the findings are in general the same as those we report in the main text:

all uncertainty measures are recessionary in nature.

The ex-post measures, as well as realized

volatility, have higher impact in magnitude than disagreement or ex-ante uncertainty. Also, even

in the large VAR, GDP increases after a shock to dispersion.
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Panel A: Uncertainty

PAYEMS

Figure IV: Macroeconomic Impact of Uncertainty
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Note: The figure shows the impulse responses of uncertainty, aggregate uncertainty and disagreement

based on eq. (5).
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Figure V: Macroeconomic Effect of Uncertainty

Panel A: Aggregate Uncertainty Panel B: Mean Bias
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Panel C: Dispersion Panel D: Realized Volatility
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Note: The figure shows the impulse responses of the ex-ante and ex-post measures of uncertainty based

on eq. (7). The uncertainty measures have been standardized.
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Figure VI: Macroeconomic Impact of Uncertainty
Panel B: Ex-Ante Uncertainty Panel C: Ex-Post Uncertainty
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Note: The figure shows the impulse responses of the ex-ante and ex-post measures of uncertainty based

on eq. (8). The uncertainty measures have been standardized.
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Figure VII: Macroeconomic
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Note: The figure shows the impulse responses for the following uncertainty measures:

and Scotti. The uncertainty measures have been standardized.
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A.4 Estimation

We propose to estimate the decomposition with its sample counterparts:

~ +oo
Ut+h|t = / Ut4-ht (T’) dr, t=R,....,T

—0o0

where R is the size of the rolling window,

_ 1 K 1 1 & 1Y 2
U (M) =% > =3 s (M=% > = [wen (1) = Dy juny ()]
R N R N
j=t—R+1 s=1 j=t—R+1 s=1
and
~ +oo 2 oo |
Uifhe = / (Tjt+h|t (1) — Tt4n (7”)) dr + V(peinye (1))dr (22)
+oo oo
+ Volyyp (r)dr —2 Cov(ziyn (1) Pryne (1))dr,
where the terms on the RHS of eq. (22) are as follows:
t t
- Dehlt (r), Tyyp (r) are estimated by % Dj+hlj (r), % Yo xjgn(r);
J=t—R+1 j=t—R+1

- Voliip (zen (1)) is an estimate of the variance of x4,y (1), which is a binary variable, recur-

sively over time:
Volyin (e (1) = Tegn (1 — Tign) ;
—‘A/Hh (th‘t (r)) is an estimate of the variance of py ), (r) recursively over time:

. 1t 9
Virh (Pegnpe (1) = Ej:tg%ﬂ (pj+h|j (1) = Prghpe (7”)>

- 50\11(33t+h (7) Pegnpe (1)) is estimated as:

Co(ar (1) o () = 3 (pysns () = e (1)) (40 () = o ()

While we do not need the Normality assumption to calculate the decomposition above, in prac-
tice we fit a Gaussian distribution to the predictive density. The main reason is to guarantee that
the “Knightian uncertainty/(Realized) Risk” decomposition is consistent with the “Ex-ante” / “Ex-
post”, since the latter is valid only under Normality. Furthermore, in the empirical implementation
we let R = 4, which amounts to calculating 4-quarter-moving average of the various components
of uncertainty, and we proxy the indefinite integrals with definite ones by treating the extrema of

either the realization or the bins as integral bounds.

o1



Additional References

Christiano, L.J.; M. Eichenbaum and C.L. Evans (2005), “Nominal Rigidities and the Dynamic
Effects of a Shock to Monetary Policy,” Journal of Political Economy 113(1), 1-45.

McCracken and Ng (2015), “FRED-MD: A Monthly Database for Macroeconomic Research,”
Federal Reserve Bank of St. Louis Working Paper 2015-012B.

Murphy, A.H. (1986), “A New Decomposition of the Brier Score: Formulation and Interpreta-
tion,” Monthly Weather Review 114(12), 2671-2673.

Rossi, B. and T. Sekhposyan (2016), “Understanding the Sources of Macroeconomic Uncer-
tainty,” mimeo.

Stephenson, D.B., C.A.S. Coelho and I.T. Joliffe (2008), “Two Extra Components in the Brier
Score Decomposition,” Weather and Forecasting 23, 752-757.

52



