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Abstract

In recent years, survey-based measures of expectations and disagreement
have received increasing attention in economic research. Many forecast sur-
veys ask their participants for fixed-event forecasts. Since fixed-event forecasts
have seasonal properties, researchers often use an ad-hoc approach in order
to approximate fixed-horizon forecasts using fixed-event forecasts. In this
work, we derive an optimal approximation by minimizing the mean-squared
approximation error. Like the approximation based on the ad-hoc approach,
our approximation is constructed as a weighted sum of the fixed-event fore-
casts, with easily computable weights. The optimal weights tend to differ
substantially from those of the ad-hoc approach. In an empirical applica-
tion, it turns out that the gains from using optimal instead of ad-hoc weights
are very pronounced. While our work focusses on the approximation of fixed-
horizon forecasts by fixed-event forecasts, the proposed approximation method
is very flexible. The forecast to be approximated as well as the information
employed by the approximation can be any linear function of the underlying
high-frequency variable. In contrast to the ad-hoc approach, the proposed
approximation method can make use of more than two such information-
containing functions.
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1 Introduction

Survey data on expectations have become an important ingredient for many em-

pirical analyses in economics and finance. Yet, for many analyses, the expecta-

tion data required does not exactly match the available survey data. An often-

encountered problem is given by the need for fixed-horizons forecasts where surveys

can only provide fixed-event forecasts. Fixed-event forecasts have seasonal proper-

ties —e.g. the dependence of the forecast error’s variance on the month of the sur-

vey —which hamper many types of empirical analyses. When confronted with this

problem, researchers often resort to an ad-hoc approach in order to construct fixed-

horizon forecasts from fixed-event forecasts. This ad-hoc approximation has been

employed in many studies, including Begg et al. (1998), Alesina et al. (2001), Gerlach

(2007), Kortelainen et al. (2011), Dovern et al. (2012), Siklos (2013), D’Agostino

and Ehrmann (2014), de Haan et al. (2014), Grimme et al. (2014), Lamla and Lein

(2014), and Hubert (2015). However, concerns about the quality of the approxi-

mation sometimes give rise to the need of justifying the use of the approach as in

Dovern et al. (2012), or to the refusal of its use as in Hubert (2014, p. 1392).

In this work, we derive an optimal approximation for fixed-horizon forecasts us-

ing fixed-event forecasts by minimizing the mean-squared approximation error. Like

the approximation based on the ad-hoc approach, our approximation is constructed

as a weighted sum of the fixed-event forecasts, with easily computable weights.

However, these optimal weights tend to differ substantially from those of the ad-hoc

approach. Moreover, they depend on several known properties of the fixed-event

forecasts (for example, whether these refer to growth rates of annual averages or

to growth rates of end-of-current-year on end-of-previous-year values), while these

properties are ignored in the ad-hoc approach. The optimal weights also depend

on an unknown covariance matrix, but are found to be very robust with respect to

misspecifications of that matrix. While our work focusses on the approximation of

fixed-horizon forecasts by fixed-event forecasts, the proposed approximation method

is very flexible. The forecast to be approximated can be any linear function of the

underlying high-frequency variable. The information employed by the approxima-

tion can also be any linear function of the underlying high-frequency variable. In

contrast to the ad-hoc approach, the proposed approximation method can make use

of more than two such functions.

It should be noted that the proposed approach is optimal in the sense that it uses

the information from all forecasts for a certain variable made at a certain point in

time in order to approximate the forecast of interest for that variable at that point

in time. Our approach does not make use of information contained in forecasts
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for other variables, or in previous or later forecasts. This could be accomplished

employing state-space models as in Kozicki and Tinsley (2012). While state-space

models can take additional information into account, they also require additional

assumptions about the data-generating process, and their implementation tends to

be more involved.

In the empirical application, we approximate the one-year-ahead inflation and

growth forecasts implied by quarterly forecasts for annual inflation and growth in the

current and in the next year published by Consensus Economics for 13 countries.

The performance of the approximations can be evaluated based on the quarterly

publications of the one-year-ahead inflation and growth forecasts. It turns out that

the approach based on optimal weights yields a lower mean-squared approximation

error than the ad-hoc approach, and that the optimal approximation is preferable to

the ad-hoc approach when trying to capture cross-sectional disagreement prevailing

among forecasters.

2 Optimal Approximations

2.1 Growth Rates

Concerning many economic variables, we are interested in their growth rates g.

These growth rates usually have a monthly, quarterly or annual frequency, and they

can be formulated with respect to the previous period, but also with respect to more

distant past periods. In order to convey all this information, define the growth rate

from period t/m− n to period t/m of the variable p which has the frequency m by

g
(m)
t/m,t/m−n =

p
(m)
t/m − p

(m)
t/m−n

p
(m)
t/m−n

with t/m = 1, 2, ..., and where m ≥ 1 refers to the number of high-frequency periods

within one low-frequency period. We require t/m to be an integer. n = 1, 2, ...

denotes the number of low-frequency periods between the levels of p for which the

growth rate is calculated. The growth rate g(1)
t,t−n has the highest possible frequency

and is indexed by t. For notational convenience, we define

gt,t−n = g
(1)
t,t−n.

For example, concerning the price level and assuming that the highest frequency is

the monthly frequency, gt,t−12 refers to the monthly growth rate with respect to the
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price level in the same month of the previous year, the so-called monthly year-on-

year (y-o-y) inflation rate, whereas g(3)
t/3,t/3−4 refers to the quarterly growth rate with

respect to the price level in the same quarter of the previous year.1

The growth rates of low-frequency variables that we observe often refer to the

change of the level of these variables between a certain low-frequency period and the

following low-frequency period. Patton and Timmermann (2011) show that, usually,

these growth rates can be well approximated by a linear function of high-frequency

growth rates, namely by

g
(m)
t/m,t/m−1 ≈

2m∑
k=1

ωkgt−k+1,t−k. (1)

If one is interested in a growth rate which is not concerned with the change from

one period to the next, it is useful to employ the approximation

g
(m)
t/m,t/m−n =

n∑
i=1

g
(m)
t/m−i+1,t/m−i, (2)

where the growth rates on the right-hand side can then be approximated by (1). In

what follows, we assume that gt+1,t is covariance stationary.

2.2 The Case of Inflation Forecasts by Consensus Economics

We are first going to focus on a specific example - inflation forecasts by Consensus

Economics - in order to illustrate our approach for determining optimal approxi-

mations and to prepare the reader for the more complex notation required for the

general case. The annual inflation rate forecasted refers to the change in the average

price level of one year to the average price level of the next year. The Consensus

forecasts are published on a monthly basis, and the fixed-event forecasts reported

every month refer to the annual inflation rate for the current and the next year.

Identifying January of the current year by t = 1, and denoting the price level in

month t by pt, the fixed-event forecasts reported are thus given by the current-year

1In principle, one could drop the requirement that t/m is an integer. For example, if, say,
g
(3)
3/3,3/3−1 refers to the growth rate of the first quarter of a year with respect to the last quarter

of the previous year, g(3)2/3,2/3−4 would refer to the growth rate of the quarter with months De-
cember (previous year), January and February (current year) with respect to the quarter with
months September, October and November (previous year). However, the possibility to define
low-frequency periods in such an uncommon way rather tends to lead to confusion and is irrelevant
in our empirical applications.
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annual inflation rate

g
(12)
1,0 =

p
(12)
1 − p(12)

0

p
(12)
0

and the next-year annual inflation rate

g
(12)
2,1 =

p
(12)
2 − p(12)

1

p
(12)
1

with

p
(12)
t/12 =

1

12

12∑
i=1

pt−i+1.

As shown by Patton and Timmermann (2011), if the growth rate of average

levels of adjacent low-frequency periods is considered, the weights ωk equal

ωk = 1− |k −m| /m. (3)

with m = 12 in the case given here. These weights seem to have appeared for the

first time in the forecasting literature in the special case of relating monthly and

quarterly growth rates, i.e. for m = 3, when they were employed in Mariano and

Murasawa (2003).

Suppose that one is interested in a fixed-horizon forecast for the growth rate

gt,t−12 denoted by ĝt,t−12. This is the case that was considered in the works by Dovern

et al. (2012) and others. In order to approximate ĝt,t−12, the ad-hoc approach uses

the weighted average of both fixed-event forecasts given by

ĝt,t−12 ≈ wadhocĝ
(12)
1,0 +

(
1− wadhoc

)
ĝ

(12)
2,1 (4)

with

wadhoc =
24− t

12

and t = 12, 13, ..., 23. For example, if we are interested in the forecast for the y-o-y

inflation rate in December of the current year, i.e. if we are interested in ĝ12,0, ĝ
(12)
1,0

would receive the weight 1 and ĝ(12)
2,1 the weight 0.

To the best of our knowledge, in the setting described, there has been no applica-

tion of the ad-hoc approach with n 6= 12, as it is unclear how the weights should be

chosen in this case. In order to harmonize the scales of the variables under study in

the case n 6= 12, in what follows we assume that the quantity to be approximated is

given by (12/n) gt,t−n or (12/n) ĝt,t−n. The approximation is denoted by g̃t,t−n, and,

5



thus, has the property

E [g̃t,t−n] = E [(12/n) gt,t−n] = E
[
g

(12)
t/12,t/12−1

]
.

For our example, this simply means that the approximation always refers to annu-

alized inflation rates.

For the moment, we can actually neglect the fact that we are dealing with fore-

casts, and simply ask the question how (m/n) gt,t−n can be approximated using g
(12)
1,0

and g(12)
2,1 . We require the approximation to be unbiased and focus on the linear

function

g̃t,t−n = wg
(12)
1,0 + (1− w) g

(12)
2,1

where both coeffi cients have to sum to 1 given that g̃t,t−n is an annualized inflation

rate and assuming that g(12)
1,0 and g(12)

2,1 are unbiased. Our aim is the minimization of

the expected squared approximation error

min
w
E
[
(gt,t−n − g̃t,t−n)2] . (5)

In order to minimize this expression, define the (36)× 1 vectors G, B1, B2 and At,n

G =


g24,23

g23,22

...

g−11,−12

 , B1 =



012

ω1

ω2

...

ω24


, B2 =



ω1

ω2

...

ω24

012


, At,n =

 024−t

1n

012+t−n

 (6)

where 0k denotes a k× 1 vector of zeros, 1k denotes a k× 1 vector of ones, and with

24− t ≥ 0 and 12 + t− n ≥ 0.

Then, the difference gt,t−n − g̃t,t−n is given by

gt,t−n − g̃t,t−n = A′t,nG− (wB′1G+ (1− w)B′2G)

=

A′t,n −B′2︸ ︷︷ ︸
:=M

+ w(B′2 −B′1)︸ ︷︷ ︸
:=N

G

= (M + wN)G
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and the quadratic expression to be minimized thus equals

E
[
(gt,t−n − g̃t,t−n)2] = (M + wN)E [GG′]︸ ︷︷ ︸

:=Ω̃

(M + wN)′

= NΩ̃N ′w2 + 2MΩ̃N ′w +MΩ̃M ′. (7)

Obviously, the minimum of (5) is attained when w is set to

w∗ = −MΩ̃N ′ /
(
NΩ̃N ′

)
. (8)

The same result is obtained using

w∗ = −MΩN ′ / (NΩN ′) (9)

with Ω being the covariance matrix of G

Ω = E [(G− E [G]) (G′ − E [G′])]

whereas Ω̃ contains the non-central second moments. In Appendix A.1, we briefly

explain why both moment matrices yield identical results for w∗.

w∗ as defined in (9) delivers optimal weights for the case where the growth rates

gt+1,t are known. However, if some of the growth rates contained in the vector G

are unknown and have to be forecast, this only affects Ω, the covariance matrix of

G, and the formula (9) continues to deliver optimal weights.

In order to illustrate the approach, suppose that gt+1,t is an i.i.d. random variable

with expectation µ and variance σ2 = 1. Moreover, assume that the last known

growth rate was observed in December of last year, and that the forecaster produces

optimal mean forecasts, i.e. that ĝt+1,t = µ for t = 0, 1, ..., 23. The covariance matrix

of G then equals

Ω =

[
024,24 012,24

012,24 I12

]
where 0k,l denotes a k × l matrix of zeros, and Ik is the k × k identity matrix.
Additionally assume that we are interested in the y-o-y inflation rate in December

of the current year, i.e. in g12,0. Using A12,12 =
[
012 112 012

]′
then yields the

optimal weight for the current-year forecast which equals w∗ = 0. This means that

the optimal approach puts all the weight on the fixed-event forecast for the next year,

whereas the ad-hoc approach puts all the weight on the fixed-event forecast for the

current year. It can easily be seen that here, using the optimal weight actually
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implies an approximation error of 0, because ĝ12,0 = ĝ
(12)
2,1 = 12µ. In contrast to

that, using the weights of the ad-hoc approach and, thus, the fixed-event forecast

for the current year, will in general lead to an approximation error, because ĝ(12)
1,0

does not only depend on the forecasts ĝt+1,t = µ, but also on the realized growth

rates gt+1,t with t = −12,−11, ...,−1.

2.3 The General Case

Here we drop the assumption that there are only two fixed-event forecasts and that

m = 12. The low-frequency period in which the fixed-event forecasts are made

is called the current low-frequency period. We continue to set t = 1 for the first

high-frequency period in the current low-frequency period.

In practice, there are several types of fixed-event forecasts not considered here

so far. These include low-frequency growth rates of non-adjacent low-frequency pe-

riods, averages of several fixed-event forecasts, annual growth rates defined as the

level-change from the last high-frequency period of a certain low-frequency period to

the last high-frequency period of the following low-frequency or fixed-event forecasts

that refer to levels instead of growth rates. However, all common fixed-event fore-

casts can be expressed as linear functions of high-frequency forecasts and data, in

the case of growth rates by making use of (1) and (2). For notational convenience,

we again neglect the fact that we are dealing with forecasts. As an example for

low-frequency growth rates of non-adjacent low-frequency periods, the growth rate

that compares the level in the quarter of a certain year to the level in the same

quarter of the previous year, if the high-frequency is the monthly frequency, can be

written as

g
(3)
t/3,t/3−4 =

1

3
gt,t−1 +

2

3
gt−1,t−2 +

11∑
i=2

gt−i,t−i−1 +
2

3
gt−12,t−13 +

1

3
gt−13,t−14 (10)

using the formulas (1) and (2) , which here are given by

g
(3)
t/3,t/3−4 =

4∑
i=1

g
(3)
t/3−i+1,t/3−i

g
(3)
t/3,t/3−1 =

6∑
k=1

(1− |k − 3| /3) gt−k+1,t−k.
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For the general case, define the q × 1 vector

G =


gqm,qm−1

gqm−1,qm−2

...

gqm+1,qm


with q =

(
q − q

)
m, where q > q. The values q and q are integers that are chosen

such that all fixed-event forecasts and the variable of interest x can be expressed as

functions of G.

Let x̌, the fixed-horizon forecast of interest, be given by

x̌ = Ǎ′G

with Ǎ being a q × 1 vector, and express the r known low-frequency variables as

f̌i = B̌′iG

with i = 1, 2, ..., r and B̌i being a q × 1 vector. Note that, while we are considering

the case that x̌ is a fixed-horizon forecast and f̌i a fixed-event forecast, the setup

could just as well be used with x being a fixed-event forecast or f̌i being a fixed-

horizon forecast. The only requirement for the forecast x̌ to be approximated and

the forecasts f̌i to be used for this approximation is that they can be represented as

linear functions of G.

In order to simplify the interpretation of the weights, it is helpful to rescale the

B̌i’s, and thereby the f̌i’s by setting

Bi = siB̌i

fi = sif̌i

where the scalars si are chosen such that Bi1q equals the same constant for all i and,

thus, E [fi] equals the same constant for all i as well. In what follows, we assume

without loss of generality that si is given by

si = m /
(
B̌′i1q

)
so that

B′i1q = m
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holds for i = 1, 2, ..., r. Defining A by

A = sǍ

with

s = m /
(
Ǎ′1q

)
,

the difference between x = AG and its approximation

x̃ =
r−1∑
i=1

wiB
′
iG+

(
1−

r−1∑
i=1

wi

)
B′rG

can be written as

x− x̃ =

A′ −B′r︸ ︷︷ ︸
=M

+
r−1∑
i=1

wi(B
′
i −B′r)︸ ︷︷ ︸
=Ni

G

= (M +wN)G

with

w=
[
w1 w2 · · · ws−1

]

N=


N1

N2

...

Ns−1

 .

The minimization of the expected quadratic approximation error gives

min
w

E
[
(x− x̃)2]

⇒ w∗′ = − (NΩN′)
−1

MΩN′.

The fact that the covariance matrix Ω can be used instead of the matrix of non-

central second moments Ω̃ again follows from the considerations in Appendix A.1,

noting that M1q = 0 and Ni1q = 0 hold. The approximation for x̌ is given by x̃/s.

3 Properties of the Approximations

The quality of the ad-hoc approximation and the optimal approximation will be

studied using the setting of the Consensus inflation forecasts. That is, there are two
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fixed-event forecasts, and At,n, B1, B2 and G are given by (6) and (??). Moreover,

we assume that the data generating process is an AR(1)-process given by

gt+1,t − µ = ρ (gt,t−1 − µ) + εt+1 (11)

with εt+1 iid N (0, σ2
ε). Without loss of generality, we set σ

2
ε = 1 − ρ2, so that the

variance of gt+1,t equals

E
[
(gt+1,t − µ)2] = 1.

We also assume that, knowing the growth rate gt,t−1, the forecaster makes optimal

h-step-ahead forecasts

ĝ∗t+h,t+h−1|t − µ = ρh (gt,t−1 − µ) . (12)

While these assumptions might appear simplistic, they allow us to study the impor-

tance of persistence, and they allow the straightforward calculation of the covariance

matrix Ω. The covariances required are given by

E [(gt+1,t − µ) (gt+1−i,t−i − µ)] = ρi

E
[(
ĝ∗t+h,t+h−1|t − µ

) (
ĝ∗t+h+i,t+h+i−1|t − µ

)]
= ρ2h+i

E
[(
ĝ∗t+h,t+h−1|t − µ

)
(gt+1−i,t−i − µ)

]
= ρi

and the resulting covariance matrix Ω can be found in Appendix A.2.

In line with the Consensus inflation forecasts and the previous example, we

now consider the case where the fixed-event forecasts g(12)
1,0 and g(12)

2,1 are made from

January to December. We want to approximate the fixed-horizon forecasts for the

monthly y-o-y inflation rate that cover the first 12 months for which no observations

are yet available, so that n = 12. We assume that the inflation rate for the month

prior to the current month (i.e. the month in which the forecast is made) is observed,

but the inflation rate for the current month is not. Thus, in January, g1,0 actually

has to be forecast, whereas g0,−1 is known, and the y-o-y inflation rate in December

of the current year is the target of the fixed-horizon forecast. Therefore, for the

January forecast, g12,0 is the object of interest, and At,12 is given by A0,12, for the

February forecast these are g13,1 and A1,12, etc.

The optimal weights resulting from this setting are displayed in Figure 1 along

with the ad-hoc weights defined in (4) . Obviously, the ad-hoc weights wadhoc for the

fixed-event forecast g(12)
1,0 are almost always larger than the optimal weights w∗. Only

at the end of the current year both weighting schemes can deliver similar values, and

w∗ can be smaller than the ad-hoc weight. Interestingly, w∗ can become negative,
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
­0.2

0

0.2

0.4

0.6

0.8

1

1.2

w∗, ρ = 0

w∗, ρ = 0.5

w∗, ρ = 0.8

w∗, ρ = 0.99

wadhoc

Figure 1: Optimal weights w∗ depending on ρ and ad-hoc weights wadhoc for current-
year forecasts g(12)

1,0 .

implying that the optimal weight for the fixed-event forecast g(12)
2,1 can become larger

than 1.

The expected squared approximation error of the different weights can be cal-

culated employing (7) . We define the ratio of the expected squared approximation

error with optimal weights w∗ to the expected squared approximation error with

ad-hoc weights wadhoc as

φt =

E

[(
ĝ∗t+11,t−1|t−1 − ˜̂g t+11,t−1|t−1

)2
∣∣∣∣w = w∗

]
E

[(
ĝ∗t+11,t−1|t−1 − ˜̂g t+11,t−1|t−1

)2
∣∣∣∣w = wadhoc

] . (13)

The corresponding values of φt are displayed in Figure 2 for t = 1, 2, ..., 12, i.e.

for the forecasts from January to December. It turns out that the mean-squared

approximation errors can be reduced substantially by using optimal weights instead

of ad-hoc weights, especially from the beginning until the middle of the year. At the

end of the year, the gains from employing optimal weights are less pronounced, unless

the DGP is extremely persistent. The values of φt obtained with ρ = 0 are similar

to those with ρ = 0.5 and not very different from those with ρ = 0.8, suggesting

that the impact of the DGP’s persistence on φt is small unless the persistence is

very strong.
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0

0.1

0.2

0.3
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0.5

0.6
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1
ρ = 0
ρ = 0.5
ρ = 0.8
ρ = 0.99

Figure 2: Ratio of expected squared approximation error with optimal weights to
expected squared approximation error with ad-hoc weights for different values of ρ

Thus, the question might arise which value of ρ could be adequate for the inflation

example, and it should be noted that empirically observed large persistence of the

monthly y-o-y inflation rate gt,t−12 are not very informative about ρ. For example,

given the DGP (11) for gt,t−1, in a regression of gt,t−12 on a constant and gt−1,t−13,

the AR-coeffi cient would converge to 0.917 with ρ = 0, to 0.969 with ρ = 0.5, and

to 0.987 with ρ = 0.8. We briefly elaborate on this relation in Appendix A.3.

4 Applications

In the following, we apply the methods developed to the Consensus forecasts for

inflation and GDP growth. Consensus forecasts are a collection of individual fore-

casts. Every month, all forecasters surveyed are asked for their forecasts of annual

inflation and GDP growth in the current and in the next year. In addition to these

fixed-event forecasts, once per quarter, namely in the months March, June, Sep-

tember, and December, the forecasters are asked for their fixed-horizon forecasts

of quarterly inflation and GDP growth for the current and the next six or seven

quarters. These growth rates are year-on-year rates, i.e. the growth rates refer to

the level of the variable in a certain quarter of a certain year compared to the level
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of the variable in the same quarter of the previous year.2

We consider the situation where the researcher only sees the fixed-event forecasts

from March, June, September, or December and then attempts to construct fixed-

horizon forecasts from these fixed-event forecasts, either using optimal weights or

ad-hoc weights. The results can then be compared to the true fixed-horizon forecasts,

and the empirical quality of both approaches can be evaluated.

We assume that inflation data up to the previous month are known when the

forecasts are made, whereas for GDP growth only the data up to the previous

quarter is available. Moreover, we assume that forecasters know monthly values of

GDP growth, which is based on the fact that forecasters observe monthly data like

surveys and industrial production which convey information about the development

of GDP growth within a quarter. Thus, the A-vector needs to contain the coeffi cients

that can be found in equation 10. Both variables are modelled as i.i.d. processes.

For inflation, we also assumed AR(1)-processes as DGPs, with ρ estimated based on

seasonally adjusted data. The results, however, hardly differ from those obtained

with ρ = 0, because the estimates of ρ do not tend to be large. Therefore, we only

report results for ρ = 0. For monthly GDP growth, we also set ρ to 0.3 Since a

forecast horizon of one year is a common choice in the context of macroeconomic

forecasts, we focus on this horizon as well. For our quarterly forecasts, this means

that, for instance, concerning the March forecasts, we would like to forecast the

y-o-y growth rates of the first quarter of the next year, so that the forecast horizon

equals h = 4 quarters.

The weights for the current-year forecasts are displayed in Table 2. Obviously,

for the forecasts from March, June and September, the ad-hoc approach places much

larger weights on the current-year forecasts than the optimal approach.4 It is also

interesting to note that the assumption of two more months with observed data can

lead to noticeable differences in the optimal weights, as observed for the December

2For inflation, this refers to the average level of the price index in the given quarter.
3This choice might at least partly be motivated by the estimates for this coeffi cient based

on Consensus forecast data reported in Patton and Timmermann (2011), which vary strongly
depending on the estimation method. The values reported are -0.853, 0.586 and 0.996. Note that
setting ρ to 0 implies that quarter-on-quarter growth rates are positively correlated. A monthly
GDP series could also be constructed based on the method proposed by Chow and Lin (1971), and
ρ could be estimated using this series.

4Note that the reasoning behind the ad-hoc approach implies that the weights of the ad-hoc
approach do not depend on the number of months for which data is already available. For example,
the y-o-y growth rate in the first quarter of the next year depends on the quarter-on-quarter growth
rates in the second, third, and fourth quarter of the current year and the first quarter of the next
year, so that one would always use the weight 0.75 for the current-year forecast if one wants to
forecast the y-o-y growth rate in the first quarter of the next year. Obviously, this number does
not depend on assumptions about known values of certain months.
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US JP GE FR UK IT CA NL NO ES SE CH EZ

inflation
fixed horizon 26 16 17 14 12 6 10 7 5 10 6 10 17
fixed event 28 21 29 21 25 15 16 10 9 16 14 15 27

GDP growth
fixed horizon 27 17 19 15 12 7 10 8 5 11 6 10 18
fixed event 28 21 29 21 25 15 16 10 9 16 14 15 27

Note: Average number of forecasters for Consensus fixed-horizon (4-quarter-ahead) and fixed-
event forecasts. The number displayed for the fixed-event forecasts is the average of the
numbers for current- and next-year forecasts which tend to be virtually identical. ‘EZ’
denotes the Euro zone. The other 2-letter country codes are ISO codes.

Table 1: Average number of fixed-horizon and fixed-event forecasters

forecasts.

We evaluate the approximations using two quantities, the approximation error

with respect to the true fixed-horizon forecasts, calculated for the average forecast

of all forecasters surveyed (i.e. the mean forecast), and the approximation error with

respect to the true cross-sectional disagreement among forecasters with respect to

their individual fixed-horizon forecasts, measured by the standard deviation. In

both cases, we use Consensus forecasts for 13 countries. While the fixed-event

forecasts of each individual forecaster are published, for the fixed-horizon forecasts

only summary statistics like the mean and the standard deviation are available, and

also the number of forecasters is given.5

Apparently, there are many cases where not all of the fixed-event forecasters

issue fixed-horizon forecasts. The distortions arising from this deviation between the

samples of fixed-event and fixed-horizon forecasters can be expected to be of minor

importance for larger economies like the US, where data from many forecasters are

available. However, for smaller economies like Norway these distortions could be

relevant, especially for the standard deviation. The average number of forecasters

for fixed-horizon and fixed-event forecasts is displayed in Table 1.

In order to illustrate the time series of interest, they are shown for the cases

of the US and the Euro zone in Figures 3 and 4. Concerning the mean forecasts,

it is obvious that the approach based on optimal weights approximates the true

fixed-horizon forecasts better than the ad-hoc approach. Since the ad-hoc approach

puts too much weight on the current-year forecasts which depend to a large extent

on observed data, the ad-hoc approach gives approximations which are too volatile.

Despite of this excess volatility, the disagreement measure obtained with the ad-hoc

approach is too small. Again, this is due to the fact that too much weight is put on

5Only the mean forecasts of the fixed-horizon forecasts are reported in the booklets published
by Consensus Economics. All additional information mentioned for the fixed-horizon forecasts can
only be found in the Excel files published by Consensus Economics.
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w∗ wadhoc

inflation GDP growth
March 0.04 0.00 0.75
June −0.05 −0.03 0.50
September −0.07 −0.08 0.25
December 0.08 −0.03 0.00

Note: Optimal weights based on assumptions that inflation and GDP growth
are monthly i.i.d. processes, that for inflation, data from previous month is
known, and that for GDP growth, data from three months before is known.
The forecast horizon h equals four quarters.

Table 2: Weights for current-year forecasts

Avg US JP GE FR UK IT CA NL NO ES SE CH EZ

Inflation
MSE ratio 0.42 0.3 0.7 0.4 0.3 0.4 0.8 0.3 0.3 0.4 0.3 0.5 0.4 0.2

GDP growth
MSE ratio 0.38 0.4 0.3 0.3 0.3 0.4 0.3 0.4 0.4 0.5 0.9 0.2 0.5 0.2

Note: The MSE ratio refers to the ratio of the mean-squared approximation error obtained with
optimal weights to the mean-squared approximation error obtained with ad-hoc weights. ‘EZ’denotes
the Euro zone. The other 2-letter country codes are ISO codes. ‘Avg’denotes the average over all
MSE ratios.

Table 3: Approximation errors of optimal and ad-hoc approach for mean forecasts

observed data which is common knowledge to all forecasters. The approach based

on optimal weights also yields a downward-biased disagreement measure, but its

bias is less pronounced.

Concerning the mean forecasts, our sample starts in 1989 for about half of the

countries, and it ends in 2015.6 For inflation, we drop those time periods from

our sample which are associated with increases in the value-added tax rate by 2

percentage points or more. This occurred in Japan, Germany, France, the UK, the

Netherlands, and Spain. We report the ratios of the average squared approximation

errors using the optimal weights to the average squared approximation errors using

the ad-hoc weights in Figure 5. This is the empirical analogue of the ratio defined

in (13) for the monthly case, so that the expectations are estimated by the sample

means.

Obviously, using optimal weights instead of ad-hoc weights can lead to extreme

reductions in the approximation errors for the four-quarter ahead forecasts from

March, June, and September. For example, for the June forecasts, on average,

the optimal approach gives squared approximation errors which are about 5 times

6The forecasts for the Netherlands, Spain and Sweden start in 1995, the forecasts for Norway
and Switzerland in 1998, and the forecasts for the Euro zone in 2002. For Germany, the GDP
growth forecasts before December 1995 and the inflation forecasts before December 1996 refer to
Western Germany.
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Figure 3: Time series of the actual four-quarter-ahead Consensus mean forecasts
and the approximations based on optimal and ad-hoc weights for inflation and GDP
growth (left panels) and time series of disagreement (measured by the standard
deviation) among the actual individual four-quarter-ahead Consensus forecasts and
the approximations based on optimal and ad-hoc weights for inflation and GDP
growth (right panels). All data displayed are for the US.

smaller than those of the ad-hoc approach. The average refers to the average over

the ratios of all countries for a specific quarter. For the March and September

forecasts, the squared approximation errors with optimal weights are about 3 times

smaller on average. As to be expected due to the similar weights for the December

forecasts, the approximation errors of both approaches attain similar values for these

forecasts. Disregarding the December forecasts, the ad-hoc approach delivers better

approximations only in two cases, namely for the March forecasts of Japan and Italy.

The results for the mean forecasts of GDP growth shown in Figure 6 resemble

those for inflation, with the optimal weights leading to better approximations except

for the December forecasts where both approaches use almost identical weights. For

the March forecasts, on average, the optimal approach gives squared approximation

errors which are about 2 times smaller than those of the ad-hoc approach, with

Norway and Spain being the only cases where the ad-hoc approach yields smaller

errors than the optimal approach. The squared approximation errors with optimal

weights are about 10 times smaller on average for the June forecasts and 6 times

smaller for the September forecasts. For the June and the September forecasts, the

optimal approach yields better approximations than the ad-hoc approach for each

country.
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Figure 4: Time series of the actual four-quarter-ahead Consensus mean forecasts
and the approximations based on optimal and ad-hoc weights for inflation and GDP
growth (left panels) and time series of disagreement (measured by the standard
deviation) among the actual individual four-quarter-ahead Consensus forecasts and
the approximations based on optimal and ad-hoc weights for inflation and GDP
growth (right panels). All data displayed are for the Euro zone.

Q1 Q2 Q3 Q4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Inflation Mean, Forecast horizon = 4q

USA
Japan
Germany
France
UK
Italy
Canada
Netherlands
Norway
Spain
Sweden
Switzerland
Euro Zone
Average

Figure 5: Ratios of the average squared approximation errors using the optimal
weights to the average squared approximation errors using the ad-hoc weights for
inflation mean forecasts four quarters ahead. The dashed black line denotes the
average over all ratios. Q1 (Q2, Q3, Q4) corresponds to the Consensus forecasts
from March (June, September, December).
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Figure 6: Ratios of the average squared approximation errors using the optimal
weights to the average squared approximation errors using the ad-hoc weights for
GDP growth mean forecasts four quarters ahead. The dashed black line denotes the
average over all ratios. Q1 (Q2, Q3, Q4) corresponds to the Consensus forecasts
from March (June, September, December).

When averaging over all forecast dates, the ratios of the mean-squared approxi-

mation errors (MSE ratios) displayed in Table 3 are obtained. The optimal weights

yield better approximations for all forecasts considered, and on average, the mean-

squared approximation errors are more than halved if one switches from ad-hoc

weights to optimal weights.

Concerning the cross-sectional disagreement of forecasters, our samples for both

variables start in 2007. As mentioned above, we use the standard deviation of the

individual forecasts as the measure of cross-sectional disagreement.7 Due to the

small sample size, we do not disregard inflation forecasts related to changes in the

VAT rate.8 Results for the ratios of the means of the squared approximation errors

are displayed in Figures 7 and 8.

The results are similar to those obtained for the mean forecasts, with the relative

performance of the ad-hoc approach being better in the disagreement case. For

example, for the December forecasts, the ad-hoc approach gives moderately better

approximations to the true forecast disagreement than the approach with optimal

weights. For the inflation forecasts from March, June and September, on average,

the squared approximation errors obtained with optimal weights are more than 2

7This standard deviation is not available before 2007, which determines the start of our sample.
8Moreover, the results for disagreement are relatively robust with respect to such changes,

because, by and large, they appear to affect the forecasts of all forecasters by the same amount.
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Figure 7: Ratios of the average squared approximation errors using optimal weights
to the average squared approximation errors using ad-hoc weights for the standard
deviations among individual inflation forecasts four quarters ahead. The dashed
black line denotes the average over all ratios. Q1 (Q2, Q3, Q4) corresponds to the
Consensus forecasts from March (June, September, December).
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Figure 8: Ratios of the average squared approximation errors using optimal weights
to the average squared approximation errors using ad-hoc weights for the standard
deviations among individual GDP growth forecasts four quarters ahead. The dashed
black line denotes the average over all ratios. Q1 (Q2, Q3, Q4) corresponds to the
Consensus forecasts from March (June, September, December).
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but less than 3 times larger than their counterparts obtained with ad-hoc weights.

A similar result is observed for the GDP growth forecasts from June. For the GDP

growth forecasts from March and September, using optimal weights instead of ad-

hoc weights reduces the squared approximation errors by about 30 to 40 percent.

When averaging over the results for all forecast dates, the results in Table 4

show that, in general, the cross-sectional disagreement is better approximated by

optimal weights, with the disagreement of GDP forecasts for Norway and Sweden

being an exception to this rule.9 Both approaches consistently underestimate the

true magnitude of disagreement, but optimal weights do so to a smaller extent, so

that the corresponding bias is closer to zero in all cases. The fact that the ad-hoc

approach delivers strongly biased results is not too surprising, because it places too

much weight on past observations which are common knowledge to all forecasters.

For inflation, except for the case of Japan, the correlations between the true and

the approximated disagreement are always larger when using optimal weights. On

average, the correlation coeffi cient is larger by a value of 0.1 if one uses optimal

instead of ad-hoc weights. For GDP growth, on average, both approaches yield

almost identical correlations, and the ad-hoc approach yields higher correlations for

about half of the countries.

One explanation why the ad-hoc approach yields a relatively high correlation

between true and approximated disagreement could be given by the correlation

between the disagreement of the current-year forecasts and the disagreement of the

next-year forecasts. For the forecasts from March and June, this correlation equals

about 0.6 on average, while for the forecasts from September and December, it

equals about 0.4. This means that for the March and June forecasts, the choice of

the weights only matters to a certain extent, because the disagreement of current-

year forecasts and the disagreement of the next-year forecasts evolve in a similar way,

and, thus, optimal and ad-hoc weights can easily produce similar results. For the

September and especially the December forecasts, where the correlation is smaller,

the differences between optimal and ad-hoc weights are not too large, so that both

methods can again give similar results.

Of course, the sample for the investigation of the behavior of disagreement con-

tains the Great Recession and is relatively short, so that there is a non-negligible

uncertainty about the validity of the results for other samples. However, if the ad-

hoc weights always yield a correlation between true and approximated disagreement

9Note that these are countries where the number of fixed-horizon forecasters is small in absolute
and also in relative terms (i.e. when compared to the number of fixed-event forecasters), as displayed
in Table 1. Therefore, the measure of ‘true’disagreement might actually be distorted to a non-
negligible extent.
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Avg US JP GE FR UK IT CA NL NO ES SE CH EZ

Inflation
MSE ratio 0.52 0.6 0.5 0.5 0.3 0.3 0.5 0.6 0.5 0.7 0.6 0.6 0.6 0.3
Bias

optim. -0.07 -0.2 -0.0 -0.1 -0.0 -0.1 -0.0 -0.0 -0.1 -0.1 -0.0 -0.0 -0.1 -0.0
ad-hoc -0.13 -0.3 -0.1 -0.1 -0.1 -0.2 -0.1 -0.1 -0.2 -0.1 -0.1 -0.1 -0.1 -0.1

Corr. true
with optim 0.73 0.7 0.7 0.7 0.9 0.7 0.8 0.8 0.6 0.6 0.7 0.6 0.7 0.9
with ad-hoc 0.63 0.6 0.8 0.6 0.8 0.5 0.7 0.7 0.4 0.5 0.6 0.6 0.6 0.7

GDP growth
MSE ratio 0.62 0.4 0.4 0.5 0.4 0.5 0.5 0.8 0.9 1.1 0.3 1.2 0.8 0.4
Bias

optim. -0.08 -0.1 -0.1 -0.1 -0.1 -0.2 -0.1 0.0 -0.1 -0.1 -0.1 0.0 -0.1 -0.1
ad-hoc -0.15 -0.2 -0.2 -0.1 -0.1 -0.3 -0.1 -0.1 -0.2 -0.1 -0.2 -0.1 -0.2 -0.1

Corr. true
with optim 0.73 0.8 0.9 0.8 0.9 0.8 0.8 0.8 0.4 0.4 0.9 0.4 0.8 0.9
with ad-hoc 0.74 0.8 0.7 0.8 0.9 0.9 0.8 0.8 0.5 0.6 0.8 0.6 0.8 0.9

Note: The MSE ratio refers to the ratio of the mean-squared approximation error obtained with optimal weights
to the mean-squared approximation error obtained with ad-hoc weights. Concerning bias, the value of the method
that yields a bias closer to zero is shown in bold. Concerning correlations, the value of the method that yields a
higher correlation is shown in bold. ‘EZ’denotes the Euro zone. The other 2-letter country codes are ISO codes.
‘Avg’denotes the average over all MSE ratios, biases and correlations, respectively.

Table 4: Approximation errors of optimal and ad-hoc approach for cross-sectional
standard deviation among forecasters

that is similar to that obtained with optimal weights, the results of studies which

rely on this correlation like, for example, Dovern et al. (2012), are obviously robust

with respect to the choice of the weights.

5 Conclusion

In the empirical literature, one frequently encounters the need to construct of fixed-

horizon forecasts from fixed-event forecasts. No well-founded approach has been

proposed to perform this construction, and researchers had to resort to ad-hoc

approaches. This work attempts to close this gap. We derive easily-computable

optimal weights for the fixed-event forecasts which allow the construction of fixed-

horizon forecasts that minimize the squared approximation error with respect to the

actual fixed-horizon forecasts.

In the empirical applications, we find that the gains from using optimal instead

of ad-hoc weights tend to be very large. The mean-squared approximation error,

on average, is more than halved. Concerning the disagreement among forecasters,

optimal weights should also be preferred for the construction of the individual fore-

casts, because they substantially reduce the bias of the disagreement measure. The

dynamics of disagreement, however, appear to be captured reasonably well by both

types of weights.
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A Appendix

A.1 Using the Covariance Matrix for the Calculation of w∗

If E [gt+1,t] = µ for t = −11,−10..., 23, the non-central matrix of second moments

Ω can be decomposed as

Ω̃ = µ213m1
′
3m + Ω

with 13m being a (3m)× 1 vector of ones. Plugging this into (8) yields

w∗ = −M (µ213m1
′
3m + Ω)N ′

N (µ213m1′3m + Ω)N ′

= −µ
2 (M13m) (N13m)′ +MΩN ′

µ2 (N13m) (N13m)′ +NΩN ′

= −MΩN ′

NΩN ′

becauseM13m = 0 and N13m = 0, since At,n13m = n, B113m = m, and B213m = m.
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A.2 The Covariance Matrix for an AR(1)-Process

Suppose that the DGP is given by (11) and that forecasts are made according to

(12). If the vector G contains nk observed growth rates and nu forecasts, i.e. if the

largest forecast horizon equals h = nu, the covariance matrix of G is given by

Ω =

[
Ω11 Ω12

Ω′12 Ω22

]

where Ω11 is the covariance matrix of the forecasts,

Ω11 =



ρ2nu ρ2nu−1 ρ2nu−2 · · · ρnu+1

ρ2nu−1 ρ2nu−2 ρ2nu−3 · · · ρnu

ρ2nu−2 ρ2nu−3 ρ2nu−4 · · · ρnu−1

...
...

...
. . .

...

ρnu+1 ρnu ρnu−1 · · · ρ2


Ω22 is the covariance matrix of the growth rates,

Ω22 =



1 ρ ρ2 · · · ρnk−1

ρ 1 ρ · · · ρnk−2

ρ2 ρ 1 · · · ρnk−3

...
...

...
. . .

...

ρnk−1 ρnk−2 ρnk−3 · · · 1


and Ω12 contains the covariances of growth rates and forecasts

Ω12 =



ρnu ρnu+1 ρnu+2 ρnu+3 · · · ρnu+nk−1

ρnu−1 ρnu ρnu+1 ρnu+2 · · · ρnu+nk−2

ρnu−2 ρnu−1 ρnu ρnu+1 · · · ρnu+nk−3

...
...

...
...

. . .
...

ρ ρ2 ρ3 ρ4 · · · ρnk


If we are in the case of the Consensus forecasts, nk + nu = 36. Assuming that the

value gt+1,t of the previous month is known, but the value of the current month

is unknown, and given the fact that current- and next-year forecasts are produced

from January to December, nk increases from 12 in January to 23 in December, so

that nu decreases from 24 in January to 13 in December.
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Figure 9: plim
(
λ̂
)
for different values of ρ

A.3 The Persistence of gt,t−n with n > 1

Assuming that the variable gt,t−1 follows an AR(1)-process

gt,t−1 = ρgt−1,t−2 + εt,

the ARMA(1,m)-process of the variable gt,t−m is given by

gt,t−m =
m∑
k=1

gt−k+1,t−k = ρgt−1,t−m−1 +
m∑
k=1

εt−k+1.

When the misspecified equation

gt,t−m = λgt−1,t−m−1 + ut

with m = 12 is estimated consistently, the estimator λ̂ converges to the values

displayed in Figure 9 for −0.99 < ρ < 0.99. Obviously, the persistence as measured

by plim
(
λ̂
)
attains large values even if the process for gt,t−1 exhibits only weak

persistence.

The values displayed in Figure 9 can be obtained by determining the autocovari-

ances of gt,t−m and applying the Yule-Walker estimator. The required formulas can

be found in Lütkepohl (1993).
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