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Abstract

We derive new tests for proper calibration of multivariate density forecasts based on

Rosenblatt probability integral transforms. These tests have the advantage that they i) do

not depend on the ordering of variables in the forecasting model, ii) are applicable to densi-

ties of arbitrary dimensions, and iii) have superior power relative to existing approaches. We

furthermore develop adjusted tests that allow for estimated parameters and, consequently,

can be used as in-sample specification tests. We demonstrate the problems of existing tests

and how our new approaches can overcome those using two applications based on multi-

variate GARCH-based models for stock market returns and on a macroeconomic Bayesian

vectorautoregressive model.
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1 Introduction

The use of density forecasts has recently become common in many areas of economics. Density

forecasts, which have been used in meteorology for a long time, are increasingly used, for instance,

in the fields of energy economics (Huurman et al., 2012), demand management (Taylor, 2012),

finance (Shackleton et al., 2010; Kitsul and Wright, 2013; Hallam and Olmo, 2014; Ghosh and

Bera, 2015), and macroeconomics (Clark, 2011; Herbst and Schorfheide, 2012; Aastveit et al.,

2014; Wolters, 2015). A number of approaches have been suggested to evaluate univariate

density forecasts (e. g., Diebold et al., 1998; Berkowitz, 2001; Bai, 2003). Many tasks, such as the

computation of Value-at-Risk measures for portfolios containing multiple assets or the planning
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early draft of the paper. All errors are our own responsibility.
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of production for a firm that serves many markets from one central production facility, require

the construction and evaluation of multivariate densities. Beginning with Diebold et al. (1999),

the literature has proposed several approaches for testing whether a sequence of multivariate

density estimates coincides with the corresponding true densities (e. g., Clements and Smith,

2000, 2002; Corradi and Swanson, 2006; Bai and Chen, 2008; González-Rivera and Yoldas, 2012;

Ko and Park, 2013; Ziegel and Gneiting, 2014). In our view, however, this strand of literature

has to date neglected two important issues (Ziegel and Gneiting (2014) being an exception).

First, the existing tests depend on the ordering of variables in a multivariate model, an issue

that is mentioned in many papers, but that has, until now, not been dealt with. This is highly

problematic because it requires the presentation of many different test results (which might lead

to inconclusive results) and even makes room for “cheating” if a researcher decides to report only

those results which correspond to one particular (“preferred”) ordering.1 Second, all empirical

applications and many of the theoretical results focus on the bivariate case. However, systems

of higher dimensionality are required to render many applications, especially in finance, useful.

We address both issues in this paper.

Following Diebold et al. (1999), the most commonly used approach for testing the calibration

of multivariate density forecasts is based on the Rosenblatt (1952) probability integral transform

(PIT). It relies on the factorization of the multivariate density into conditional distributions

because these, in turn, can be used to form independent PITs which, for well-specified models,

follow a uniform distribution.2 Suitable transformations of these conditional PITs then lead to

a reduction of the multivariate testing problem to a univariate one. These univariate tests can

be implemented using any goodness-of-fit test (e. g., of the Kolmogorov type or of the smooth

type). How well a testing approach works depends crucially on the chosen transformation.

Diebold et al. (1999) suggest stacking all conditional PITs, which yields a sample of dn

independent PITs (where d refers to the dimension of the density and n is the size of the sample

used to evaluate the density forecasts). Clements and Smith (2000) propose to use the sequence

of products of the conditional PITs because this preserves the temporal connection between

PITs from one period and increases power against misspecification of the correlation between

the model variables. For the bi-variate case, Clements and Smith (2002) suggest using the ratio of

the conditional PITs because this improves on the “product approach” whenever the correlation

exceeds that implied by the null hypothesis. In reality, however, the true correlation structure

might be unknown, i. e., it might be impossible to determine whether the “product approach”

or the “ratio approach” should be preferred; Ko and Park (2013) propose a location-adjusted

version of the “product approach” that has superior power in both cases.

To test whether the transformations follow the distribution implied by the null hypothesis,

a number of papers have suggested goodness-of-fit tests tailored to the context of evaluating

density forecasts based on time series models. In particular, these papers deal with the issues of

parameter uncertainty and dynamic misspecification. We want to highlight two of them: using

1Essentially, this is one form of “data snooping” as discussed in White (2000).
2Henceforth, we use the term ‘conditional distributions’ in a way that includes the one marginal distribution

that is needed for the factorization of the joint density. In addition, we will refer to the PITs of the conditional
distributions as conditional PITs.
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the Khmaladze martingale transformation, Bai and Chen (2008) construct different distribution-

free test statistics based on the conditional PITs which eliminates the effects of parameter

estimation.3 Corradi and Swanson (2006) use a bootstrap to construct a goodness-of-fit test

that allows for dynamic misspecification under the null hypothesis.

In this paper, we contribute to the literature on density forecast evaluation in the following

way. We propose new transformations of the conditional PITs which can be combined with

any goodness-of-fit test for univariate distributions. The new transformations have a number of

properties that renders them preferable to existing approaches. First, they are order invariant,

a concept we define below. Second, they are applicable to densities of arbitrary dimension in

contrast to the existing approaches that generally focus on the bivariate case. Third, they have

better power against a wide range of alternatives. Furthermore, for the case of multivariate

normal distributions, we propose adjusted transformations, based on the idea of randomization

proposed by Durbin (1961), which can be used when parameters have to be estimated and

evaluation is done in-sample. This makes our approach a suitable tool also for specification

testing, even though in this paper we focus on the evaluation of out-of-sample forecasts. Our

preferred transformations (called Z2
t
∗

and Z2
t
†

below) are constructed as the sum of squares

of normal transformations of conditional PITs corresponding to all possible orderings of the

variables and are distributed as a mixture of chi-squared random variables.

Our main results are as follows. First, the distortions in rejection rates caused by a ten-

dentious application of tests which are not order invariant (“cheating”) can be very substantial.

Second, the order-invariant tests that we propose have better power properties relative to ex-

isting tests against a wide range of deviations from the null model. Third, this remains the

case when parameter uncertainty is taken into account. Finally, we show that the new tests are

helpful for testing the appropriateness of density forecasts based on sophisticated multivariate

models for financial returns and for evaluating multivariate macroeconomic forecasts. In partic-

ular, we show that the potential for “cheating” is immense in these applications and that our

robust tests are required to draw unambiguous conclusions.

The remainder of this paper is organized as follows. In Section 2, we introduce the notation,

generalize existing tests, and derive new tests to evaluate multivariate densities. In Section 3, we

assess the properties of a wide range of tests by means of Monte Carlos simulations. In Section 4,

we demonstrate the usefulness of the newly proposed tests using two empirical applications.

Section 5 concludes. The Appendix contains all proofs, descriptions of univariate goodness-of-fit

tests, and additional simulation results.

2 Theory

Consider a vector valued time series {Yt}nt=1 = {[Y1,t, . . . , Yd,t]}nt=1 with true conditional density

fYt(Yt|Ωt−1), where Ωt−1 denotes the information set available at time t − 1. Suppose that

we have a density forecast f̂Yt(Yt|Ωt−1) with corresponding cumulative density function (CDF)

3Note that by looking at transformations of test statistics for individual conditional PITs, their approach is
somewhat different from the more commonly used approach that looks at test statistics for transformations of
conditional PITs.
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F̂Yt(Yt|Ωt−1). Furthermore, let F̂Yi(Yi,t|Ωt−1) denote the forecast for the ith marginal distri-

bution function and denote by F̂Yi|Yi−1,...,Y1
(Yi,t|Yi−1,t, . . . , Y1,t,Ωt−1) the predictive conditional

distribution of Yi,t given Yi−1,t, . . . , Y1,t.

We are interested in testing the null hypothesis that the forecast density coincides with the

true density, or formally:4

H0 : f̂Yt(Yt|Ωt−1) = fYt(Yt|Ωt−1) (2.1)

One important condition for H0 to be true is that the density forecasts have to be properly

calibrated. The latter term refers to the consistency between the realized values of Yt and

f̂Yt (Gneiting et al., 2007). For the univariate case it can be shown that H0 implies that the

probability integral transform (PIT) of Yt with respect to f̂Yt , given by F̂Yt(Yt), is uniformly

distributed between 0 and 1. The latter fact can be used to test for proper density calibration

in the univariate case (e. g., Dawid, 1984; Diebold et al., 1998). The uniformity can be checked

either by graphical methods, such as QQ-plots and histograms, or by goodness-of-fit tests, such

as the Kolmogorov-Smirnov test, the Anderson-Darling test, or Neyman’s smooth test.

Unfortunately, matters are more complicated in the multivariate case because the distribu-

tion of the multivariate PITs of Yt, i.e., the distribution of the random variable F (Yt), is in

general unknown for d > 1; see, e. g., Genest and Rivest (2001). In essence, the task then is to

reduce the multivariate problem to a univariate one by using suitable transformations. One way

to approach this problem, proposed in Ziegel and Gneiting (2014), is to work with the Kendall

distribution function for F̂Yt(Yt|Ωt−1), given by

KF̂ (w) = Pr
(
F̂Yt(Yt|Ωt−1) ≤ w

)
for w ∈ [0, 1],

and the corresponding copula probability integral transform. It remains a problem, however, that

KF̂ is available in closed form only for special cases and, in general, needs to be approximated

by simulation.

The other (more commonly used) way to approach this problem is based on the result by

Rosenblatt (1952) that relies on the factorization of the joint densities into the product of

conditional densities

f̂Yt(Yt) = f̂Yd|Yd−1,...,Y1
(Yd,t)× . . .× f̂Y2|Y1

(Y2,t)× f̂Y1(Y1,t). (2.2)

Then the sequences of conditional PITs for the elements of Yt

U1
t = F̂Y1(Y1,t),

U
2|1
t = F̂Y2|Y1

(Y2,t),

...

U
d|d−1,...,1
t = F̂Yd|Yd−1,...,Y1

(Yd,t)

(2.3)

4To simplify notation, we henceforth suppress the dependence on Ωt−1 and the conditioning variables in the
function arguments.
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are independent of each other and distributed U(0, 1). In other words, transforming each ele-

ment of Yt by the corresponding predictive conditional cumulative density yields independent

sequences of uniformly distributed random variables.

Diebold et al. (1999) then achieve the reduction of dimension by stacking all conditional

PITs, noting that this produces a sequence of random variables which are distributed U(0, 1).

More formally, if we let

St = [U
d|d−1,...,1
t , . . . , U1

t ]′, (2.4)

then S = [S′1, S
′
2, . . . , S

′
n]′ constitutes a vector of variables which are uniformly distributed under

H0.

Instead of stacking the conditional PITs, other approaches advocate transforming the vector-

valued random variable Yt into a scalar random variable and then computing PITs for this

transformed random variable. This is also the approach that we use when developing our new

tests. To formalize the idea, consider the general transform function gt(·) : Rd → R and define

the transformed series Wt = gt(Yt) with distribution function FWt estimated by F̂Wt . The PIT

of Wt is given by

UWt = F̂Wt(Wt). (2.5)

Testing H0 then is equivalent to testing whether UWt ∼ U(0, 1). Well-known tests can be used

to implement this. Below, we rely on Neyman’s smooth test (Neyman, 1937), the Kolmogorov-

Smirnov test and a test suggested by Knüppel (2015).5 The tests are reviewed in Appendix B

and in Section 2.4.

For one-step-ahead density forecast—this is what we have referred to so far—the PITs are

also independently distributed across time under H0, i. e., Ut
i.i.d.∼ U(0, 1). Mitchell and Wallis

(2011) call density forecasts which satisfy both features completely calibrated. We revisit the

issue of multi-step forecasts, which cause the PITs to be autocorrelated, in Section 2.4.

Following the seminal contribution of Diebold et al. (1999), different transformations gt(·)
have been considered in the literature to test for the proper calibration of densities. Clements

and Smith (2000) propose using the product of the conditional PITs, Clements and Smith

(2002) (for the bi-variate case) look at their ratio, while Ko and Park (2013) advocate using

the product of the demeaned conditional PITs. We reconsider these approaches in Section 2.2

where we generalize them to the case of densities with arbitrary dimensions, before suggesting,

as we argue, preferable transformations.

2.1 Ordering of the Variables

So far, we have implicitly assumed that there exists a natural ordering of variables from 1 to

d. This, of course, is not really true and, as already mentioned in most papers on the topic

(Diebold et al., 1999; Clements and Smith, 2002; Hong and Li, 2005; Ishida, 2005), sorting the

elements in Yt in a different way–and, thus, factorizing the multivariate density in a different

way–will generally lead to different results. Specifically, the Rosenblatt transform in (2.3) clearly

5The Anderson-Darling test, which is usually reported to have good properties for univariate testing problems,
showed surprisingly poor power in preliminary simulations and was therefore not considered.
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depends on the ordering of the variables in Yt. There are d! different orderings of the variables,

leading to different conditional PITs. Consequently, the outcome of a hypothesis test based on

the transformed variable will depend on the selected ordering. This is an undesirable property

for a test since a researcher who is interested in supporting or discrediting a certain model

may perform the hypothesis test for all distinct orderings and only report the outcome with

the largest or smallest p-value. Note that while it is certainly true that for low-dimensional

cases results for all possible permutations can be presented and discussed, this becomes quickly

impossible for larger d. In addition, even when multiple test statistics are presented, it is unclear

how an overall decision should be formed based on those.

We use the following notation for different permutations of the variables. Let πk for k =

1, . . . , d! be the set of all possible permutations of the data. Furthermore, let πk(i) denote the

index (or “position”) of variable i in the kth permutation. Then, the conditional PITs under

permutation πk are given by

U
πk(1)
t = F̂Yπk(1)

(Yπk(1),t)

U
πk(2)|πk(1)
t = F̂Yπk(2)|Yπk(1)

(Yπk(2),t)

...

U
πk(d)|πk(d−1),...,πk(1)
t = F̂Yπk(d)|Yπk(d−1),t,...,Yπk(1),t

(Yπk(d),t).

(2.6)

The following definition formalizes the concept that the exact permutation of the data is not

relevant for the test outcome.

Definition 1. Let T (πk) be a test statistic based on {Yt}nt=1 under permutation πk. We call a

test statistic T (πk) order invariant if T (πk) = T (πj), ∀ k 6= j.

In the next section, we show that existing tests are order invariant only under very restrictive

conditions and we derive new tests that are always order invariant.

2.2 Tests Based on the Rosenblatt Transformation

In this section, we generalize existing tests (Clements and Smith, 2000; Ko and Park, 2013) for

the case of an arbitrarily dimensioned density and, derive new tests which we consider to be

preferable because they are order invariant and, as shown below, have better power properties

in a wide range of situations.

Clements and Smith (2000) propose to evaluate density forecasts based on the product of

the conditional PITs corresponding to one particular permutation of the variables6. In this case,

the transformation function gt(·) is given by

Pt,d = g(Yt) =

d∏
i=1

U
i|1:i−1
t , (2.7)

6Clements and Smith (2002) consider their ratio to be an alternative. We do not discuss this transformation
since it is not obvious how to extend the ratio to higher dimensions.
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where U
i|1:i−1
t denotes the conditional probability integral transform of variable Yi,t given the

variables Y1,t to Yi−1,t, and is defined as U1
t for i = 1. The authors derive the distribution of

Pt,d for d = 2, 3. In the following proposition we generalize these results for arbitrary d.

Proposition 1. Let Pt,d be given by the expression in (2.7). Under H0 it has the following

probability density function (PDF) and CDF:

fPd(Pt,d) =
(−1)d−1

(d− 1)!
logd−1(Pt,d) (2.8)

FPd(Pt,d) = Pt,d

d−1∑
i=0

fPd−i(Pt,d) (2.9)

Note that for d = 2, 3 the density derived in Clements and Smith (2000) is recovered.

Ko and Park (2013) explain why tests based on Pt,d have good power only against correlations

lower than the hypothesized value. They suggest a location-adjusted version which does not

suffer from this asymmetry and which is given by

P ∗t,d = g(Yt) =

d∏
i=1

(U
i|1:i−1
t − 0.5). (2.10)

Ko and Park only consider the case d = 2. We generalize their results to any value of d in the

following proposition.7

Proposition 2. Let P ∗t,d be given by the expression in (2.10). Under H0 it has the following

PDF and CDF:

fP ∗d (P ∗t,d) =
2d−1

(d− 1)!
logd−1

∣∣∣∣∣ 1

2dP ∗t,d

∣∣∣∣∣
FP ∗d (P ∗t,d) = P ∗t,d2

d−1
d∑
i=1

1

(d− i)!
logd−i

∣∣∣∣∣ 1

2dP ∗t,d

∣∣∣∣∣+
1

2

Although the distributions of Pt,d and P ∗t,d depend on the dimension of the application, we

suppress the index d in what follows. Below, we also refer to these approaches by P and P ∗.

Tests based on the transformations suggested by Diebold et al. (1999), Clements and Smith

(2000), and Ko and Park (2013) are not, in general, insensitive to the choice of the permutation.

In the following proposition, we show under which conditions these three transformations are

order invariant.

Proposition 3. Test statistics T (πk) based on {Pt}nt=1, {P ∗t }nt=1 and on the stacked trans-

formation {St}nt=1 are order invariant if and only if under H0 the variables Y1,t, . . . , Yd,t are

independent, i. e., when f̂Yt(Yt) = f̂Y1(Y1,t)× . . .× f̂Yd(Yd,t).
7Note that the density given in the appendix of Ko and Park (2013) needs to be multiplied by a factor of 2.

7



We continue by introducing a transformation that leads to order-invariant test statistics

under less restrictive conditions and forms the basis for additional transformations which always

lead to order invariant tests. Consider the transformation

Z2
t,d =

d∑
i=1

(
Φ−1

(
U
i|1:i−1
t

))2
, (2.11)

where Φ denotes the CDF of the standard normal distribution. H0 implies that Z2
t,d ∼ χ2

d, where

χ2
d denotes the chi-squared distribution with d degrees of freedom. Denoting by Fχ2

d
the CDF of

this distribution, UZ
2

t = Fχ2
d
(Z2

t,d) is distributed U(0, 1) under H0.
8 As the following proposition

shows, tests based on Z2
t are order invariant under normality.

Proposition 4. Test statistics T (πk) based on {Z2
t }nt=1 are order invariant if under H0 Yt ∼

N (µ,Σ), i. e., when Yt follows a multivariate normal distribution with mean vector µ and co-

variance matrix Σ.

Remark: The proof in Appendix A shows that under the null hypothesis of normality it holds

that Z2
t = (Yt−µ)′Σ−1(Yt−µ), which is the transformation proposed by Ishida (2005). Of course,

Z2
t can also be used to test non-Gaussian densities. In this case, however, the corresponding

test statistics are not generally order invariant, except for the obvious case of independence.

Ideally, we would like to have a transformation that is order invariant in general. Such a

transformation can be constructed as follows. Consider all possible permutations πk for k =

1, . . . , d! of the variables and the corresponding sequences of conditional PITs defined by (2.6).

This yields a total of d×d! terms. However, only d×2d−1 of those terms are distinct. To see why,

note that there are d variables that can each be ordered first to last. When a particular variable

is ordered second, there are
(
d−1
1

)
= d− 1 possible conditioning variables. When this variable is

ordered third, there are
(
d−1
2

)
distinct sets of conditioning variables (each containing two of the

other variables), and so on. Finally, when the variable is ordered last, the number of conditioning

sets is
(
d−1
d−1
)

= 1. Therefore, the overall number of distinct PITs is d×
∑d−1

k=0

(
d−1
k

)
= d× 2d−1.

The transformation that we propose is similar in structure to Z2
t defined by (2.11) but

considers the sum over all distinct conditional PITs derived from all possible permutations of

the variables. To formalize, let γki for k = 1, . . . , 2d−1 be the set of all sets of conditioning

variables (including the empty set) corresponding to all distinct conditional PITs for Yi,t. Then

the suggested transformation has the form

Z2
t
∗

=

d∑
i=1

2d−1∑
k=1

(
Φ−1

(
U
i|γki
t

))2
. (2.12)

Since all distinct conditional PITs enter into this transformation, order invariance is ensured

for any test statistic based on Z2
t
∗
. However, due to the fact that the terms in the sum are

not independent in general, Z2
t
∗

does not follow a χ2 distribution under H0. The following

proposition gives its distribution under normality.

8Again, we’ll denote the transformation as Z2
t and refer to the approach by Z2.
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Proposition 5. Let Yt ∼ N (µ,Σ). Then Z2
t
∗

is distributed as
∑d

i=1 λiZ
2
i , for independent

N (0, 1) variables Z1, . . . , Zd and λ1, . . . , λd the non-zero eigenvalues of the rank d matrix RZ∗,

which is the correlation matrix of all distinct terms Φ−1
(
U
i|γki
t

)
∀ i, k entering Z2

t
∗
. A typical

entry of RZ∗ is given by

Corr

(
Φ−1

(
U
i|γk

i
t

)
,Φ−1

(
U
j|γl

j

t

))
= (Σi,i − Σi,γk

i
Σ−1
γk
i ,γ

k
i

Σγk
i ,i

)−1/2(Σj,j − Σj,γl
j
Σ−1
γl
j ,γ

l
j

Σγl
j ,j

)−1/2×

(Σi,j − Σj,γl
j
Σ−1
γl
j ,γ

l
j

Σγl
j ,i
− Σi,γk

i
Σ−1
γk
i ,γ

k
i

Σγk
i ,j

+ Σi,γk
i
Σ−1
γk
i ,γ

k
i

Σγk
i ,γ

l
j
Σ−1
γl
j ,γ

l
j

Σγl
j ,j

),

where the Σr,c (r, c ∈ {i, γki }) are scalars, vectors, and matrices containing those elements of Σ

that are defined by the row(s) corresponding to the variable(s) defined by r and the column(s)

corresponding to the variable(s) defined by c.

Remark: When Yt does not follow a multivariate normal distribution, the above result does not

hold. In this case, the terms Φ−1
(
U
i|γki
t

)
do not jointly follow a multivariate normal distribution

(even though they are marginally normally distributed) because their dependence structure is

unknown in general. Such cases include non-Gaussian parametric distributions but also situ-

ations in which the analytic form of the distribution is unknown and the PITs are based on

non-parametric estimations of conditional and marginal densities.

In those cases, the distribution of Z2
t
∗

can be obtained straightforwardly by Monte Carlo

simulation, as long as it is possible to generate random draws from the hypothesized model, which

is, e. g., the case for models estimated with Bayesian methods. The Monte Carlo simulation can

be used to obtain a nonparametric approximation to the distribution of Z2
t
∗

along the following

lines:

1. For each period in the evaluation sample (t), generate B′ distinct conditional forecasts,

ŷ
(b)
t , based on the model under H0. These forecasts should reflect the same kinds of

uncertainty that are also taken into account during the construction of the conditional

predictive densities f̂yt(yt).

2. Given f̂yt(yt), compute Φ−1
(
U
i|γki
t,(b)

)
, ∀i, k, for all B′ simulated conditional forecasts. In

other words, compute all distinct “inverse” conditional and marginal PITs for each of the

simulated conditional forecasts obtained under H0.

3. Based on the set of Φ−1
(
U
i|γki
t,(b)

)
, compute Z2∗

t,(b), i. e., construct a set of B′ transformed

statistics under H0.

4. Compute UZ
2∗

t = Pr
(
Z2
t
∗
< Z2∗

t,(b)

)
by simply counting how often the transformed statis-

tic based on the actual realizations is smaller than the transformed statistics based on

conditional forecasts that are generated under H0.

5. Apply preferred test to the sequence of UZ
2∗

t to test the null hypothesis of a U(0, 1)

distribution.
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When d is very large, the number of terms entering Z2
t
∗

can become very large.9 In this case,

it appears sensible to use a transformation in which the number of terms grows only linearly

with d. A transformation that is always order invariant can be obtained by considering only

those conditional PITs corresponding to the distribution of Yi,t for i = 1, . . . , d conditional on

all other variable. Denoting those conditional PITs by U
i|−i
t , where i| − i denotes variable i

conditional on the set {1, . . . , d}\i, the transformation is given by

Z2
t
†

=
d∑
i=1

(
Φ−1

(
U
i|−i
t

))2
. (2.13)

Under normality of Yt, the distribution Z2
t
†

is given by the following corollary to Proposition 5.

Corollary 1. Let Yt ∼ N (µ,Σ). Then Z2
t
†

is distributed as
∑d

i=1 λiZ
2
i , for independent N (0, 1)

variables Z1, . . . , Zd and λ1, . . . , λd the eigenvalues of the matrix RZ†, which is the correlation

matrix of all terms Φ−1
(
U
i|−i
t

)
for i = 1, . . . , d entering Z2

t
†
. A typical entry of RZ† is given

by

Corr
(

Φ−1
(
U
i|−i
t

)
,Φ−1

(
U
j|−j
t

))
= (Σi,i − Σi,−iΣ

−1
−i,−iΣ−i,i)

−1/2(Σj,j − Σj,−jΣ
−1
−j,−jΣ−j,j)

−1/2×

(Σi,j − Σj,−jΣ
−1
−j,−jΣ−j,i − Σi,−iΣ

−1
−i,−iΣ−i,j + Σi,−iΣ

−1
γk
i ,−i

Σ−i,−jΣ
−1
−j,−jΣ−j,j),

where the index −i denotes all rows/columns of Σ except for the ith one.

This transformation still uses information from all variables but fewer terms enter into the

statistic. In the non-Gaussian case, the same approach as for Z2
t
∗

can be used to approximate

the distribution of Z2
t
†
. Our simulations show that neither Z2

t
∗

nor Z2
t
†

is superior in general.

Below, we refer to tests based on the latter two transformations by Z2∗ and Z2†.

2.3 Estimated Parameters

So far, we have neglected the issue of parameter uncertainty because in this paper we are mainly

concerned with the out-of-sample evaluation of predictive densities. Treating the density fore-

casts as primitives as suggested by Berkowitz (2001), we can, therefore, abstract from parameter

uncertainty. We simply test whether the density forecasts are properly calibrated without any

reference to the density generating model. Therefore, we can assume for all transformations

presented in Section 2.2 that the parameters under the null model are known. In contrast, when

testing the in-sample goodness-of-fit of the hypothesized model, the parameters need to be esti-

mated from the same sample used to evaluate the model fit and one implicitly tests a composite

hypothesis. This changes the distribution of the corresponding test statistics. Ignoring this

issue will, in general, lead to undersized tests. Bai (2003) and Bai and Chen (2008) overcome

this problem by relying on the Khmaladze transformation, whereas Andrews (1997) solves this

problem by using a parametric bootstrap. The latter solution could easily be applied to our

tests for testing general model specifications.

9With d = 10, for instance, the number of terms equals 5,120.

10



However, here we suggest a simple method which can be used to adjust the transformations

studied above to take into account the estimation of parameters when Yt follows a multivariate

normal distribution. The idea is to apply an appropriate randomization to the transformations,

which offsets the effect of using estimated instead of true parameters. This idea dates back

to Durbin (1961) and has been studied in Wagle (1968), González-Barrios et al. (2010), and

Szkutnik (2012).

To see the general idea, let {Yi,t}nt=1 be N(µi, σ
2
i ) distributed and let

Ẑi,t =
Yi,t − µ̂i

σ̂i
, (2.14)

where µ̂i and σ̂i are the usual sample mean and standard deviation. The distribution of Ẑi,t is

not standard normal due to the standardization with the sample mean and standard deviation

but has the distribution given in David and Johnson (1948). Now let m be a random variable

drawn from a N (0, 1/n), and let s2 be a random variable drawn from a χ2
n−1 divided by n− 1.

Then Durbin (1961) shows that the sequence {Ẑ ′i,t = sẐi,t +m}nt=1 is i.i.d. N (0, 1) distributed.

Let us start with the distribution of Z2
t when Σ = Cov(Yt) is replaced by the sample covari-

ance matrix Σ̂ and µ = E(Yt) is replaced by the sample mean. First, note that in the present

situation Z2
t can be written as

Z2
t =

d∑
i=1

(
Yi,t|1:i−1 − µi|1:i−1

σi|1:i−1

)2

, (2.15)

where Yi|1:i−1 denotes Yi,t conditional on Y1,t, . . . , Yi−1,t, and µi|1:i−1 and σi|1:i−1 are the corre-

sponding conditional mean and standard deviation. In practice, however, these are replaced by

the estimators µ̂i|1:i−1 and σ̂i|1:i−1 giving the feasible form

Ẑ2
t =

d∑
i=1

(
Yi,t|1:i−1 − µ̂i|1:i−1

σ̂i|1:i−1

)2

, (2.16)

which does not follow a χ2
d distribution. The following proposition shows how Durbin’s random-

ization can be used to recover that distribution.

Proposition 6. Let Yt ∼ N (µ,Σ) with µ and Σ unknown. Let mi ∼ N (0, 1/n) and s2i ∼
χ2
n−1/(n − 1) for i = 1, . . . , d independent of each other. Let Ẑi,t|1:i−1 =

Yi,t|1:i−1−µ̂i|1:i−1

σ̂i|1:i−1
. Then

Z̃2
t =

∑d
i=1

(
siẐi,t|1:i−1 +mi

)2
follows a χ2

d distribution.

The transformations Pt and P ∗t , as well as the stacked transformation St by Diebold et al.

(1999) can be adjusted similarly in this situation. Let

Ũ
i|1:i−1
t = Φ(siẐi,t|1:i−1 +mi).

Then the transformations S̃t, P̃t, and P̃ ∗t are defined as in (2.4), (2.7), and (2.10) with U
i|1:i−1
t

replaced by Ũ
i|1:i−1
t .
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Next we turn to the distributions of Z2∗
t and Z2†

t when parameters are estimated.

Proposition 7. Let Yt ∼ N (µ,Σ) with µ and Σ unknown. Let RZ∗ be the correlation matrix de-

fined in Proposition 5. Let m = (m1, . . . ,md·dn−1) ∼MVN (0, 1nRZ∗) and s2 = (s21, . . . , s
2
d·dn−1) =

diag(S), with S ∼ W(RZ∗ , n − 1)/(n − 1) a random matrix from a Wishart distribution. Then

Z̃2∗
t =

∑d
i=1

∑2d−1

k=1

(
si|γki

Ẑit|γki
+mi|γki

)2
is distributed as

∑d
i=1 λiZ

2
i , for independent N (0, 1)

variables Z1, . . . , Zd and λ1, . . . , λd the non-zero eigenvalues of the matrix RZ∗.

The transformation Z̃2†
t is defined analogously and its distribution follows straightforwadly

from Proposition 7 and Corollary 1. Note, however, that the result in Proposition 7 is not directly

applicable since the distribution of Z̃2∗
t depends on the matrix RZ∗ through the random draws

m and s2, as well as the eigenvalues λ1, . . . , λd, which is unknown if Σ is unknown. However,

a feasible transformation can be computed based on the estimated covariance matrix Σ̂, which

does not affect the transformation asymptotically.

Corollary 2. The result of Proposition 7 continues to hold as n→∞ when RZ∗ is replaced by

R̂Z∗, computed as in Proposition 5 based on a consistent estimator Σ̂.

Our simulations below show that using the estimated covariance matrix to apply Proposi-

tion 7 also works well in finite samples with sample sizes as small as 50 observations. Note that

the approach we describe above can in principle be adapted to non-Gaussian models. However,

this is a non-trivial task and we leave it for future research.

2.4 Autocorrelation

Above, we assume that the PITs are i.i.d. which implies that they are independent across time.

This, however, is only true in general if the model that is used to generate the predictive densi-

ties is not dynamically misspecified and/or if we restrict ourselves to one-step-ahead forecasts.

Whenever one of the two conditions is violated, the sequences of PITs are subject to some form

of autocorrelation.

We argue that dynamic misspecification is no big concern in practice because forecasting

models, in general, can be appropriately specified without major costs. To check whether this is

indeed the case, one can either pre-test for autocorrelations in the sequence of PITs, {UWt }nt=1,

or use tests that are designed for testing the joint hypothesis of properly calibrated densities

and autocorrelation-free PITs. The latter approach is, for instance, put forward by Berkowitz

(2001), who develops a joint likelihood ratio test for H0 : Φ−1(Ut)
i.i.d.∼ N (0, 1), or Hong and Li

(2005), who develop a nonparametric specification test for the same hypothesis in the context

of continuous-time models.

In contrast, PITs based on h-step-ahead density forecasts will generally follow a moving

average process of order h − 1. Such multi-step forecasts are frequently required by decision

makers and therefore need to be produced by forecasters; see Section 4.2 below. Thus, in this

case the autocorrelation is “a feature and not a bug” and one needs to deal with it by using

tests that take this form of autocorrelation into account. One test that allows us to account for

autocorrelation in a straightforward way was recently suggested by Knüppel (2015). This test
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is based on a set of raw moments of some suitable transformation of the PITs. To be specific,

Knüppel (2015) suggests transforming the PITs into standard uniformly distributed variables

(with mean 0, unit variance, skewness of 0, and kurtosis of 1.8) using ŨWt =
√

12
(
UWt − 1

2

)
.

Below, we follow this suggestion. Denoting m̂r = 1/n
∑n

t=1

(
ŨWt

)r
and mr = E

[(
ŨWt

)r]
, a

number of N differences between empirical and expected raw moments is collected in one vector

D̂r1r2...rN =


m̂r1 −mr1

m̂r2 −mr2
...

m̂rN −mrN

 . (2.17)

Again, we follow Knüppel’s suggestion and use the first four moments to form D̂1234. Knüppel

(2015) shows that under H0 (and subject to some mild conditions)
√
n D̂r1r2...rN converges to

a multivariate normal distribution with mean 0 and a covariance matrix that is given by the

long-run covariance, Ωr1r2...rN , of the vector

dt =



(
ŨWt

)r1
−mr1(

ŨWt

)r2
−mr2

...(
ŨWt

)rN
−mrN

 .

The test proposed in Knüppel (2015) is based on the following statistic which follows a χ2

distribution under H0:

αr1r2...rN = nD̂′r1r2...rN Ω̂−1r1r2...rN D̂r1r2...rN ∼ χ
2
N , (2.18)

where Ω̂r1r2...rN is a consistent estimator of Ωr1r2...rN . Autocorrelation in the PITs can be taken

into account straightforwardly by using a suitable HAC estimator for the long-run covariance

Ωr1r2...rN such as the one proposed by Newey and West (1987). The truncation lag can be either

chosen based on a rule of thumb or be determined based on the specific context, e. g., in the

case of h-step-ahead forecasts.

3 Monte Carlo Studies

We use Monte Carlo simulations to analyze i) how severe the size and power distortions caused by

“cheating” with the order-dependent approaches can be, ii) the size and power of the tests based

on the transformations discussed in the previous section, and iii) how well the randomization

approach works in the presence of estimated parameters. We assume that the data generating

process (DGP) under the null hypothesis is a multivariate normal distribution given by

yt ∼ N (0,Σ), (3.1)
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with the d×d covariance matrix Σ being such that all d elements of yt have unit variances (σ2i = 1

for i = 1, . . . , d) and the correlation between any two elements of yt is equal to 0.5 (ρij = 0.5 for

all i 6= j). We consider dimensions of d = {2, 3, . . . , 6} and sample sizes of n = {50, 100, 200}.
Throughout the paper, we use 10,000 iterations for our Monte Carlo simulations.

We consider five different alternative DGPs which imply different (combinations of) devia-

tions from H0:

• Alternative 1 (H1): The data are generated from a multivariate normal distribution

with σ2i = 1.1 and ρij = 0.5.

• Alternative 2 (H2): The data are generated from a multivariate normal distribution

with σ2i = 1.0 and ρij = 0.4.

• Alternative 3 (H3): The data are generated from a multivariate normal distribution

with σ2i = 1.1 and ρij = 0.4.

• Alternative 4 (H4): The data are generated from a multivariate t distribution with 8

degrees of freedom with σ2i = 1.0 and ρij = 0.5.

• Alternative 5 (H5): The data are generated from a multivariate t distribution with 8

degrees of freedom with σ2i = 1.1 and ρij = 0.4.

To test whether the PITs of the various transformed variables, UWt , are uniformly distributed

we use Neyman’s smooth (NS) test (Neyman, 1937) for our baseline results and present robust-

ness checks based on the Kolmogorov-Smirnov (KS) test as well as the test proposed by Knüppel

(2015) which we abbreviate by “K”.

3.1 Potential for “Cheating”

In this section, we present results that address the issue of whether considering different per-

mutations of the data can have a serious impact on the outcomes of the tests that are not

order invariant.10 The question that we ask is: what rejection rates do we obtain if we always

choose the permutation for which we obtain either the highest or the lowest test statistic? The

idea behind this exercise is the following: a researcher who wants to discredit (support) the

hypothesis that a particular model produces good density forecasts could, in principle, search

all permutations and select the one which yields the highest (lowest) test statistic; hence the

term “cheating”. We present results for H0 and H5 based on n = 100; results are similar for

other alternatives and available upon request. We only consider Neyman’s smooth test here,

but results for other tests are very similar.

Figure 1 shows how severe the issue of “cheating” is under the null hypothesis. The solid

line indicates the nominal size of 5 % which, as we show below, is also obtained in practice for

all tests considered if the latter are applied properly (meaning that the ordering of variables

is chosen randomly). The other lines refer to the rejection frequencies that we obtain for the

10Note that tests based on Z2 are order invariant under the Gaussian setup that we use here.
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Figure 1: Potential for cheating under H0.

tests based on S, P , and P ∗, respectively, when we always choose that permutation for which

we obtain the highest (lowest) test statistic. At the lower end of obtainable rejection rates,

it is clearly possible to virtually never reject the null hypothesis for any dimension. On the

other hand, the (true) null hypothesis can be rejected much too frequently if one chooses those

permutations yielding high test statistics. For d = 2 the “room for cheating” is rather limited,

with obtainable rejection rates being around 10 %. Once the dimension (and consequently the

number of possible permutations) increases, obtainable rejection rates increase quickly. They

lie above 50% for d = 6 for all transformations considered and reach virtually 100 % for the test

based on P ∗.

Now we turn to the effects of “cheating” on the rejection rates under the alternative. Figure 2

shows three lines for each of the tests considered. The solid lines indicate the power that is

obtained for different d when the tests are applied properly. The upper (lower) lines show the

rejection rates that one obtains when always selecting the highest (lowest) test statistic across all

possible permutations of the d variables. The range of obtainable rejection rates is considerable

in all cases. The potential for “cheating” is lowest for tests based on S. In this case, using the

smallest test statistic leads to a rejection frequency of about 60%, in contrast to a little over 80%

for the properly used test. For the other approaches the interval increases with d and ranges

from virtually 0 to almost 1 for d = 6. This means that even though the data are generated
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Figure 2: Potential for cheating under H5.

from a different DGP, a researcher would be able to purposely select permutations in such a way

that H0 is almost never rejected.

3.2 Size and Power

We start by discussing the results under the assumption of known parameters. The Monte Carlo

results concerning the size and power for the different transformations can be found in Table 1.

These results are based on Neyman’s smooth test. Corresponding results based on alternative

tests are shown in Appendix C and generally support our conclusions. Focusing on the upper

panel of the table, we see that none of the approaches suffers from substantial size-distortions.

In all cases, the obtained actual sizes are very close to the nominal size of 5 %.

In terms of power, the second panel of the table reveals that tests based on our three new

transformations and on S perform best when deviations of the variances (H1) have to be detected.

Their powers are very close to each other for all considered sample sizes, with tests based on Z2

and Z2∗ performing marginally better than that based on S which, in turn, has slightly higher

power than the test based on Z2†. The third panel, referring to H2, shows that the three new

approaches consistently outperform the tests based on the previously suggested transformations,

showing that they are better suited for detecting deviations from H0 in terms of the correlation

structure of the multivariate density. The improvements of our new tests over tests based on
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P and P ∗ are substantial, and while the test based on Z2 outperforms that based on S only

marginally, the other two new approaches have substantially higher power against H2 than the

latter. Combining misspecification of variances and correlations in H3 leads to the results shown

in the fourth panel of the table. Here, the new approaches consistently outperform the tests

based on S, P , or P ∗. Relative to the test based on S the outperformance is substantial only

for small samples (n = 50), as S and the new tests quickly approach a power of 1 for moderate

to large sample sizes.

Turning to the power properties of the different tests in terms of detecting misspecification

of the kurtosis, the results relating to H4 show that the new approaches outperform all existing

tests by a wide margin. Especially for the small sample size the results are stunning: in general,

the power of the new approaches exceeds that of even the best-performing old approach threefold.

Adding wrongly calibrated variances and correlations to the misspecification of the distribution

in H5 leads to a decrease of this outperformance. This is because there is little room for the power

of the new approaches to improve while, at the same time, tests based on the old transformations

gain a lot of power through these additional deviations from H0. However, our new approaches

still clearly outperform the existing approaches.

Now, we turn to the case in which the model parameters have to be estimated from the

available data sample. We analyze how strongly the performance in terms of size and power

properties declines relative to the case of known parameter values. Table 2 shows the results

based on Neyman’s smooth tests and, again, robustness checks using alternative tests for uni-

formity can be found in Appendix C. In general, the results indicate that tests based on all

transformations are substantially undersized if one does not take into account that parameters

are estimated from the available sample. Using the transformations based on the randomization

approach described in Section 2.3, in general, yields correctly sized tests. The tests based on

P and P ∗ are an exception; the former are still undersized for all considered settings while the

latter are still undersized for the case of bivariate densities. With regard to the performance

under H4 we conclude that having to deal with estimated parameters results in a considerable

loss of power; at the same time, the ranking of the competing tests remains unaffected.

4 Applications

In this section we provide two applications of our tests. Both applications use models for more

than two variables and both show that using tests that are not order invariant potentially gives

the researcher the opportunity to manipulate the reported results in many situations. In Section

4.1, we consider the problem of forecasting the distribution of weekly stock index returns for

five countries. The models are a DCC-GARCH and more flexible model specifications based

on a time-varying t-copula with fat-tailed and potentially asymmetric GARCH models as the

margins. In Section 4.2, we analyze the ability of the Bayesian vector autoregressive model by

Primiceri (2005) to forecast the multivariate density of macroeconomic variables for the US.
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Table 1: Size and power - known parameters (Neyman’s smooth test)

Size n = 50 n = 100 n = 200

S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2†

d = 2 0.047 0.051 0.047 0.051 0.050 0.052 0.051 0.050 0.052 0.045 0.054 0.055 0.053 0.051 0.050 0.051 0.052 0.053
d = 3 0.049 0.047 0.048 0.047 0.053 0.052 0.050 0.047 0.050 0.047 0.049 0.047 0.052 0.047 0.047 0.053 0.052 0.055
d = 4 0.049 0.050 0.048 0.050 0.048 0.051 0.053 0.052 0.050 0.045 0.049 0.047 0.051 0.050 0.051 0.045 0.051 0.049
d = 5 0.051 0.049 0.051 0.049 0.052 0.054 0.051 0.047 0.048 0.049 0.048 0.047 0.050 0.050 0.049 0.049 0.053 0.052
d = 6 0.047 0.051 0.049 0.048 0.047 0.048 0.049 0.054 0.049 0.047 0.049 0.048 0.052 0.049 0.049 0.052 0.053 0.051

Power against H1 n = 50 n = 100 n = 200

S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2†

d = 2 0.197 0.137 0.139 0.198 0.199 0.164 0.328 0.210 0.211 0.336 0.336 0.273 0.556 0.338 0.358 0.596 0.583 0.484
d = 3 0.253 0.150 0.162 0.273 0.272 0.227 0.435 0.223 0.240 0.464 0.472 0.394 0.739 0.385 0.411 0.777 0.766 0.673
d = 4 0.323 0.164 0.184 0.338 0.335 0.289 0.557 0.247 0.280 0.603 0.597 0.516 0.859 0.435 0.487 0.893 0.882 0.822
d = 5 0.385 0.175 0.205 0.418 0.407 0.360 0.654 0.279 0.315 0.698 0.693 0.635 0.925 0.472 0.539 0.948 0.940 0.909
d = 6 0.449 0.193 0.219 0.482 0.475 0.434 0.741 0.301 0.361 0.783 0.763 0.721 0.961 0.527 0.600 0.977 0.971 0.954

Power against H2 n = 50 n = 100 n = 200

S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2†

d = 2 0.066 0.046 0.100 0.067 0.072 0.106 0.077 0.052 0.144 0.081 0.080 0.145 0.100 0.063 0.244 0.106 0.105 0.235
d = 3 0.090 0.052 0.083 0.098 0.111 0.168 0.136 0.063 0.103 0.146 0.166 0.274 0.219 0.086 0.136 0.247 0.283 0.492
d = 4 0.135 0.060 0.106 0.149 0.175 0.238 0.217 0.076 0.139 0.241 0.290 0.406 0.377 0.114 0.199 0.429 0.513 0.691
d = 5 0.174 0.065 0.121 0.195 0.247 0.308 0.306 0.095 0.154 0.350 0.436 0.538 0.546 0.145 0.259 0.612 0.730 0.836
d = 6 0.225 0.075 0.138 0.252 0.324 0.373 0.409 0.115 0.200 0.462 0.570 0.643 0.706 0.187 0.327 0.762 0.856 0.915

Power against H3 n = 50 n = 100 n = 200

S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2†

d = 2 0.305 0.135 0.256 0.326 0.325 0.378 0.510 0.203 0.423 0.549 0.549 0.627 0.810 0.341 0.696 0.844 0.848 0.904
d = 3 0.504 0.180 0.292 0.550 0.559 0.619 0.788 0.290 0.473 0.834 0.849 0.894 0.980 0.493 0.757 0.987 0.991 0.996
d = 4 0.664 0.227 0.350 0.724 0.762 0.791 0.929 0.387 0.587 0.953 0.966 0.976 0.999 0.660 0.881 0.999 1.000 1.000
d = 5 0.801 0.290 0.436 0.850 0.875 0.890 0.980 0.489 0.690 0.988 0.993 0.995 1.000 0.792 0.940 1.000 1.000 1.000
d = 6 0.892 0.346 0.508 0.923 0.941 0.946 0.997 0.589 0.787 0.998 0.999 0.999 1.000 0.881 0.976 1.000 1.000 1.000

Power against H4 n = 50 n = 100 n = 200

S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2†

d = 2 0.107 0.077 0.080 0.183 0.188 0.156 0.160 0.105 0.123 0.302 0.302 0.241 0.299 0.172 0.218 0.544 0.545 0.439
d = 3 0.142 0.085 0.095 0.322 0.314 0.257 0.241 0.122 0.171 0.545 0.538 0.431 0.437 0.207 0.313 0.843 0.837 0.729
d = 4 0.177 0.091 0.125 0.481 0.472 0.391 0.311 0.143 0.214 0.763 0.750 0.652 0.563 0.247 0.413 0.970 0.970 0.925
d = 5 0.231 0.109 0.149 0.620 0.622 0.551 0.399 0.165 0.269 0.889 0.883 0.822 0.677 0.291 0.519 0.996 0.995 0.987
d = 6 0.264 0.114 0.173 0.747 0.736 0.670 0.456 0.186 0.327 0.961 0.955 0.924 0.752 0.344 0.619 1.000 1.000 0.998

Power against H5 n = 50 n = 100 n = 200

S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2†

d = 2 0.186 0.108 0.181 0.299 0.300 0.320 0.293 0.155 0.275 0.486 0.478 0.514 0.504 0.248 0.478 0.756 0.762 0.795
d = 3 0.298 0.155 0.185 0.507 0.525 0.524 0.493 0.233 0.276 0.762 0.773 0.778 0.772 0.402 0.465 0.958 0.963 0.968
d = 4 0.406 0.199 0.232 0.666 0.689 0.688 0.656 0.323 0.364 0.904 0.913 0.911 0.905 0.563 0.597 0.994 0.997 0.996
d = 5 0.521 0.260 0.283 0.793 0.802 0.791 0.781 0.430 0.446 0.965 0.971 0.968 0.965 0.691 0.711 1.000 1.000 1.000
d = 6 0.588 0.304 0.326 0.859 0.872 0.865 0.847 0.505 0.514 0.988 0.991 0.989 0.987 0.784 0.799 1.000 1.000 1.000

Notes: Rejection frequencies of Neyman’s smooth test based on the transformations introduced in Section 2.2 for the null hypothesis of multivariate
normality with σi = 1 for i = 1, . . . , d and ρij = 0.5 for all i 6= j. The alternative hypotheses are defined in Section 3. All Monte Carlo simulations
are based on 10,000 iterations.

4.1 Predicting the Distribution of Stock Market Returns

As a first application, we consider the problem of forecasting the joint distribution of five in-

ternational stock market indices. Our data consist of weekly returns of the MSCI indices for

the US, Japan, UK, Australia, and Germany and were obtained from Datastream. The sample

spans the period from January 1971 until October 2013 for a total of 2,232 weekly returns.

We consider eight different time periods of four years for which we evaluate density forecasts.

These (out-of-sample) evaluation periods are (1) 1981-1984, (2) 1985-1988, (3) 1989-1992, (4)

1993-1996, (5) 1997-2000, (6) 2001-2004, (7) 2005-2008, and (8) 2009-2013. For each period,

the previous ten years are considered as in-sample data to estimate the models of interest. The

models are re-estimated for each week using a recursive scheme.

Three competing models of increasing complexity are considered, namely (i) a Gaussian

DCC-GARCH model (Engle, 2002), (ii) a time-varying Student t-copula with t-GARCH mar-
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Table 2: Size and power - estimated parameters (Neyman’s smooth test)

Size (original test) n = 50 n = 100 n = 200

S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2†

d = 2 0.030 0.027 0.012 0.022 0.023 0.021 0.026 0.026 0.014 0.023 0.024 0.020 0.026 0.022 0.012 0.020 0.021 0.022
d = 3 0.028 0.029 0.033 0.022 0.023 0.021 0.030 0.025 0.032 0.022 0.023 0.023 0.030 0.024 0.033 0.024 0.024 0.023
d = 4 0.030 0.030 0.038 0.024 0.024 0.020 0.026 0.023 0.039 0.022 0.022 0.022 0.025 0.028 0.035 0.023 0.022 0.022
d = 5 0.034 0.031 0.038 0.023 0.020 0.021 0.029 0.024 0.035 0.021 0.021 0.023 0.026 0.026 0.036 0.024 0.024 0.025
d = 6 0.033 0.032 0.035 0.027 0.026 0.024 0.027 0.027 0.038 0.027 0.025 0.026 0.029 0.027 0.035 0.021 0.021 0.023

Size (adjusted test) n = 50 n = 100 n = 200

S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2†

d = 2 0.054 0.041 0.026 0.053 0.051 0.054 0.054 0.036 0.024 0.052 0.053 0.049 0.054 0.037 0.025 0.047 0.050 0.047
d = 3 0.057 0.036 0.047 0.055 0.051 0.055 0.053 0.035 0.052 0.049 0.052 0.051 0.050 0.034 0.050 0.051 0.053 0.047
d = 4 0.061 0.039 0.049 0.055 0.053 0.050 0.055 0.037 0.051 0.048 0.049 0.053 0.052 0.032 0.049 0.051 0.052 0.047
d = 5 0.064 0.038 0.049 0.057 0.051 0.050 0.058 0.032 0.054 0.048 0.048 0.051 0.054 0.032 0.050 0.051 0.048 0.053
d = 6 0.063 0.040 0.050 0.052 0.049 0.049 0.057 0.039 0.048 0.054 0.052 0.051 0.050 0.029 0.052 0.052 0.049 0.049

Power against H4 n = 50 n = 100 n = 200

S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2†

d = 2 0.100 0.062 0.058 0.165 0.158 0.138 0.153 0.084 0.091 0.270 0.270 0.221 0.278 0.153 0.180 0.499 0.495 0.401
d = 3 0.112 0.059 0.085 0.238 0.234 0.186 0.210 0.095 0.147 0.467 0.465 0.362 0.389 0.178 0.289 0.775 0.771 0.648
d = 4 0.126 0.062 0.098 0.327 0.308 0.224 0.246 0.101 0.184 0.638 0.625 0.500 0.496 0.209 0.374 0.922 0.918 0.839
d = 5 0.154 0.069 0.100 0.409 0.390 0.265 0.280 0.109 0.208 0.771 0.755 0.615 0.578 0.240 0.451 0.979 0.977 0.936
d = 6 0.155 0.077 0.098 0.461 0.439 0.283 0.315 0.119 0.236 0.854 0.841 0.712 0.646 0.270 0.532 0.996 0.995 0.980

Notes: Rejection frequencies of Neyman’s smooth test based on the transformations introduced in Section 2.2 for the null hypothesis of multivariate
normality with σi = 1 for i = 1, . . . , d and ρij = 0.5 for all i 6= j. The alternative hypotheses are defined in Section 3. All Monte Carlo simulations
are based on 10,000 iterations.

gins,11 and (iii) a time-varying t-copula with skewed-t-GJR-GARCH margins. Formally, for the

DCC-GARCH model the marginal models for i = 1, . . . , d are given by

Yi,t = µi + εi,t

εi,t =
√
hi,tzi,t

hi,t = ωi + αiε
2
i,t−1 + βihi,t−1

with zi,t ∼ N (0, 1), ωi, αi, βi ≥ 0 and αi + βi < 1. The correlation matrix Rt of the innovations

zt = [z1,t, . . . , zd,t] is given by

Rt = diag(Qt)
−1/2Qtdiag(Qt)

−1/2, (4.1)

where

Qt = (1− αc − βc)Q̄+ αcz
′
t−1zt−1 + βcQt−1, (4.2)

with αc, βc ≥ 0, αc + βc ≤ 1, and Q̄ = E(z′tzt), which in practice is estimated with the sample

covariance matrix of zt.

For the second model, the marginal models are the same as above, with the difference that

the innovations zi,t follow a t-distribution with νi degrees of freedom. The dependence between

the t-distributed GARCH innovations zt is given by a t-copula with degrees of freedom νc and

correlation matrix Rt. Let Ui,t = Tνi

(√
νi
νi−2

Yit−µi√
hit

)
, where Tνi denotes the CDF of a univariate

11The time-varying correlation matrix of the copula is driven by DCC-type dynamics as described in the text,
see also Manner and Reznikova (2012).
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t-distribution with νi degrees of freedom. Then the t-copula is given by

C(U1,t, . . . Ud,t;Rt, νc) = T dνc(T
−1
νc (U1,t), . . . , T

−1
νc (Ud,t);Rt),

where T dνc stands for the CDF of the d-dimensional t-distribution with νc degrees of freedom.

For details and properties of the t-copula see, e. g., Joe (2014). The evolution of the correlation

matrix is given by (4.1) and (4.2), but with zi,t replaced by T−1νc (Ui,t)
√

νc−2
νc

. Note that this

model is slightly more flexible than a DCC-GARCH model based on a multivariate t-distribution

since the copula approach allows all marginal series to have distinct degrees-of-freedom which

are also different from the degrees of freedom of the copula. The estimation of the copula-based

model is naturally done in two steps, ensuring numerical stability at the price of a small loss in

statistical efficiency; see Joe (2005) on two-step estimation of copula models.

The third model is made even more flexible by assuming that the GARCH innovations zi,t

follow the skewed-t distribution of Hansen (1994) and by relying on the GJR-GARCH model of

Glosten et al. (1993), for which the conditional variance follows

hi,t = ωi + αiε
2
i,t−1 + βihi,t−1 + γiε

2
i,t−1I(εi,t−1 < 0).

The dependence is again given by the DCC-t-copula model.

For each model and each time period, we compute the Rosenblatt PITs and further transform

the data with the methods studied in Section 2.2. Recall that for non-Gaussian models the

distribution of Z2∗
t and Z2†

t is not known. Therefore, we compute the PITs by Monte Carlo

simulation as explained in Section 2.2. The null hypothesis of a correctly predicted density is

then tested with Neyman’s smooth test (Neyman, 1937) and the test by Knüppel (2015), the

latter test being robust to autocorrelation in the transformed series.12 In Tables 3 and 4, we

report the p-values based on the different transformations introduced in Section 2.2. For those

tests which are not order invariant we consider all 5! = 120 permutations of the data. We report

the p-value of a random permutation of the variables (based on the arbitrary order in which we

downloaded the data: US, JP, UK, AU, GE) and, in brackets, the smallest and largest p-values

across all permutations.

Overall, the results are mixed and depend on the time period under study. However, a few

things clearly stand out. First of all, the Gaussian DCC model is rejected by all tests for all

time periods except the 1997-2000 period. Second, model specifications (ii) and (iii) perform

much better, but are still rejected for some periods. Notably, most tests reject these models

for the aforementioned 1997-2000 period. This suggests that during that period returns had

much lighter tails than in previous years. A shorter in-sample period may be appropriate to

reflect such non-stationarities. Second, the more flexible specification (iii) does not yield more

appropriate forecasts for all periods, confirming the known fact that model complexity may yield

superior in-sample fit, but not necessarily a better forecasting performance. Third, the potential

for “cheating” using the tests based on S, P , and P ∗, by Diebold et al. (1999), Clements and

12Here, we use an automatic selection of the truncation lag following Andrews (1991).
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Table 3: Density forecast evaluation for stock market returns (Neyman’s smooth test)

Gaussian DCC S P P∗ Z2 Z2∗ Z2†

1981-1984 0.022 [0.007, 0.189] 0.001 [0.000, 0.019] 0.013 [0.005, 0.948] 0.013 0.012 0.005
1985-1988 0.000 [0.000, 0.000] 0.000 [0.000, 0.001] 0.647 [0.004, 0.914] 0.000 0.001 0.001
1989-1992 0.000 [0.000, 0.001] 0.142 [0.001, 0.457] 0.016 [0.000, 0.075] 0.000 0.000 0.000
1993-1996 0.000 [0.000, 0.000] 0.004 [0.000, 0.021] 0.019 [0.000, 0.019] 0.000 0.000 0.000
1997-2000 0.169 [0.009, 0.642] 0.015 [0.000, 0.382] 0.727 [0.059, 0.981] 0.010 0.066 0.089
2001-2004 0.000 [0.000, 0.000] 0.002 [0.001, 0.120] 0.014 [0.000, 0.051] 0.000 0.000 0.000
2005-2008 0.000 [0.000, 0.167] 0.000 [0.000, 0.004] 0.001 [0.000, 0.609] 0.000 0.000 0.000
2009-2013 0.000 [0.000, 0.000] 0.009 [0.000, 0.066] 0.015 [0.000, 0.506] 0.000 0.000 0.000

t-GARCH-tDCC-Cop S P P∗ Z2 Z2∗ Z2†

1981-1984 0.286 [0.054, 0.645] 0.001 [0.000, 0.032] 0.347 [0.227, 0.997] 0.538 [0.330, 0.538] 0.375 0.199
1985-1988 0.000 [0.000, 0.000] 0.001 [0.000, 0.012] 0.538 [0.057, 0.991] 0.113 [0.029, 0.206] 0.057 0.350
1989-1992 0.409 [0.016, 0.425] 0.787 [0.045, 0.911] 0.970 [0.009, 0.970] 0.162 [0.102, 0.290] 0.146 0.125
1993-1996 0.007 [0.001, 0.052] 0.044 [0.001, 0.114] 0.685 [0.010, 0.750] 0.013 [0.011, 0.032] 0.061 0.075
1997-2000 0.056 [0.005, 0.089] 0.070 [0.001, 0.720] 0.626 [0.002, 0.952] 0.011 [0.009, 0.017] 0.006 0.094
2001-2004 0.000 [0.000, 0.001] 0.024 [0.001, 0.377] 0.145 [0.001, 0.335] 0.000 [0.000, 0.000] 0.000 0.000
2005-2008 0.000 [0.000, 0.446] 0.000 [0.000, 0.032] 0.015 [0.002, 0.950] 0.055 [0.047, 0.166] 0.499 0.079
2009-2013 0.001 [0.000, 0.007] 0.151 [0.001, 0.431] 0.013 [0.002, 0.972] 0.040 [0.024, 0.051] 0.028 0.023

st-GJR-tDCC-Cop S P P∗ Z2 Z2∗ Z2†

1981-1984 0.307 [0.040, 0.587] 0.001 [0.000, 0.022] 0.192 [0.123, 0.998] 0.756 [0.614, 0.774] 0.694 0.200
1985-1988 0.000 [0.000, 0.000] 0.002 [0.000, 0.045] 0.640 [0.048, 0.995] 0.005 [0.002, 0.011] 0.004 0.005
1989-1992 0.049 [0.000, 0.050] 0.617 [0.033, 0.924] 0.603 [0.002, 0.967] 0.241 [0.157, 0.357] 0.202 0.221
1993-1996 0.004 [0.000, 0.028] 0.042 [0.002, 0.076] 0.586 [0.007, 0.656] 0.014 [0.011, 0.038] 0.050 0.047
1997-2000 0.033 [0.001, 0.208] 0.218 [0.001, 0.926] 0.223 [0.002, 0.979] 0.008 [0.007, 0.014] 0.022 0.159
2001-2004 0.000 [0.000, 0.000] 0.050 [0.002, 0.348] 0.027 [0.000, 0.042] 0.000 [0.000, 0.000] 0.000 0.000
2005-2008 0.000 [0.000, 0.210] 0.006 [0.000, 0.463] 0.003 [0.000, 0.714] 0.010 [0.009, 0.024] 0.020 0.008
2009-2013 0.277 [0.007, 0.729] 0.704 [0.076, 0.790] 0.108 [0.008, 0.967] 0.728 [0.684, 0.754] 0.328 0.202

Notes: The table shows p-values corresponding to the different transformations introduced in Section 2.2 and using Neyman’s smooth
test (Neyman, 1937). The data are weekly MSCI stock index returns for the US, Japan, UK, Australia and Germany. Forecasts are
evaluated for the stated periods and the previous 10 years of data are used as the in-sample period. For transformations which are
not order invariant, the numbers in brackets show the lowest and highest obtained p-values across all permutations of the variables;
for these transformations, the first p-value is for an arbitrarily selected permutation. The models, introduced in Section 4.1, are
a Gaussian DCC-GARCH model, t-GARCH margins and a t-copula with DCC correlation matrix, and a GJR-GARCH model with
skewed-t innovations and a t-copula with DCC correlation matrix.

Smith (2000), and Ko and Park (2013), respectively, is immense. For the majority of periods

one can find a permutation that rejects or does not reject the density forecasts of any of the

models we study. Note, however, that in line with our results from Section 3.1, the range of

obtainable p-values is a little smaller for tests based on S than for the ones based on P and

P ∗. Turning to the results for Z2 which are not order invariant for the non-Gaussian models,

one can see that the range of the p-values is very limited and that there is almost no room for

cheating based on this transformation.

In summary, we recommend evaluating the density forecast solely based on Z2∗ and Z2†,

and possibly based on Z2. The results based on the other tests are not reliable as different

permutations can lead to substantially different conclusions regarding the performance of the

models. Furthermore, our Monte Carlo simulations show that the new tests are superior in

terms of power. Thus looking only at the last two columns of Tables 3 and 4, we see that at the

1% significance level the copula-based and fat-tailed model specifications (ii) and (iii) are only

rejected for one or two time periods. Taking into account that for each test we perform eight

different hypothesis tests (for the different periods), we are actually in a situation of multiple

hypothesis testing. Using a Bonferroni correction, a test at the 5% significance level should thus

reject when the p-value is smaller than 0.05/8 = 0.0063. Thus, overall, the models are only

rejected for the 1997-2000 period, for which the Gaussian DCC model (i) is appropriate.
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Table 4: Density forecast evaluation for stock market returns (Knüppel test)

Gaussian DCC S P P∗ Z2 Z2∗ Z2†

1981-1984 0.025 [0.008, 0.227] 0.009 [0.005, 0.062] 0.022 [0.009, 0.954] 0.012 0.013 0.010
1985-1988 0.000 [0.000, 0.000] 0.001 [0.000, 0.005] 0.633 [0.003, 0.903] 0.005 0.019 0.010
1989-1992 0.001 [0.000, 0.002] 0.173 [0.002, 0.489] 0.026 [0.000, 0.067] 0.000 0.000 0.000
1993-1996 0.000 [0.000, 0.000] 0.006 [0.000, 0.031] 0.019 [0.000, 0.023] 0.000 0.000 0.000
1997-2000 0.174 [0.011, 0.713] 0.015 [0.001, 0.429] 0.703 [0.048, 0.977] 0.037 0.180 0.166
2001-2004 0.000 [0.000, 0.001] 0.007 [0.005, 0.172] 0.052 [0.000, 0.105] 0.000 0.000 0.001
2005-2008 0.000 [0.000, 0.265] 0.000 [0.000, 0.024] 0.024 [0.001, 0.671] 0.000 0.000 0.001
2009-2013 0.000 [0.000, 0.000] 0.009 [0.000, 0.120] 0.015 [0.000, 0.627] 0.000 0.000 0.000

t-GARCH-tDCC-Cop S P P∗ Z2 Z2∗ Z2†

1981-1984 0.279 [0.053, 0.641] 0.009 [0.002, 0.079] 0.325 [0.127, 0.997] 0.416 [0.261, 0.423] 0.181 0.066
1985-1988 0.000 [0.000, 0.000] 0.003 [0.000, 0.034] 0.522 [0.037, 0.990] 0.196 [0.057, 0.283] 0.111 0.385
1989-1992 0.369 [0.009, 0.389] 0.864 [0.078, 0.939] 0.968 [0.003, 0.968] 0.128 [0.070, 0.269] 0.123 0.115
1993-1996 0.002 [0.000, 0.028] 0.055 [0.002, 0.113] 0.660 [0.001, 0.714] 0.002 [0.001, 0.006] 0.016 0.038
1997-2000 0.049 [0.003, 0.066] 0.087 [0.005, 0.747] 0.588 [0.002, 0.960] 0.003 [0.002, 0.005] 0.002 0.033
2001-2004 0.000 [0.000, 0.001] 0.037 [0.006, 0.437] 0.193 [0.000, 0.427] 0.010 [0.010, 0.016] 0.008 0.002
2005-2008 0.000 [0.000, 0.503] 0.001 [0.000, 0.071] 0.086 [0.001, 0.964] 0.136 [0.112, 0.294] 0.660 0.189
2009-2013 0.001 [0.000, 0.007] 0.171 [0.002, 0.466] 0.005 [0.000, 0.968] 0.080 [0.063, 0.111] 0.050 0.086

st-GJR-tDCC-Cop S P P∗ Z2 Z2∗ Z2†

1981-1984 0.305 [0.043, 0.583] 0.013 [0.001, 0.063] 0.190 [0.134, 0.998] 0.650 [0.489, 0.678] 0.575 0.086
1985-1988 0.000 [0.000, 0.000] 0.006 [0.000, 0.061] 0.634 [0.047, 0.993] 0.047 [0.022, 0.066] 0.025 0.030
1989-1992 0.048 [0.000, 0.048] 0.660 [0.068, 0.938] 0.626 [0.001, 0.950] 0.206 [0.133, 0.318] 0.176 0.187
1993-1996 0.001 [0.000, 0.013] 0.035 [0.001, 0.052] 0.476 [0.000, 0.578] 0.003 [0.002, 0.011] 0.019 0.028
1997-2000 0.034 [0.000, 0.215] 0.249 [0.009, 0.933] 0.221 [0.002, 0.975] 0.009 [0.009, 0.014] 0.023 0.078
2001-2004 0.000 [0.000, 0.000] 0.070 [0.005, 0.355] 0.035 [0.000, 0.057] 0.001 [0.001, 0.001] 0.001 0.000
2005-2008 0.000 [0.000, 0.270] 0.023 [0.002, 0.531] 0.004 [0.001, 0.684] 0.058 [0.055, 0.088] 0.060 0.043
2009-2013 0.286 [0.005, 0.706] 0.656 [0.090, 0.783] 0.104 [0.004, 0.968] 0.744 [0.704, 0.772] 0.335 0.219

Notes: The table shows p-values corresponding to the different transformations introduced in Section 2.2 and using the test by
Knüppel (2015). The data are weekly MSCI stock index returns for the US, Japan, UK, Australia and Germany. Forecasts are
evaluated for the stated periods and the previous 10 years of data are used as the in-sample period. For transformations which are
not order invariant, the numbers in brackets show the lowest and highest obtained p-values across all permutations of the variables;
for these transformations, the first p-value is for an arbitrarily selected permutation. The models, introduced in Section 4.1, are
a Gaussian DCC-GARCH model, t-GARCH margins and a t-copula with DCC correlation matrix, and a GJR-GARCH model with
skewed-t innovations and a t-copula with DCC correlation matrix.

4.2 Evaluating Macroeconomic Density Forecasts

As a second application, we demonstrate how the new tests developed in this paper can be applied

in the area of macroeconomic forecasting. To demonstrate that our new tests, in contrast to

available approaches, are not prone to cheating and that they can also be used to evaluate higher-

order forecasts and when densities are estimated nonparametrically, we evaluate macroeconomic

density forecasts for the US economy which we generate using the model by Primiceri (2005).

The model is a Bayesian vector autoregressive (VAR) model with time-varying parameters,

which is designed to track changes in macroeconomic volatility and structural changes that alter

the economic transmission channels. As in Primiceri (2005), we model the unemployment rate

(ut), the log-difference of the chain weighted GDP price index (∆pt), and the yield of three-

month Treasury bills (it). The data are downloaded from FRED and cover the sample from

1953q1 until 2015q2. Collecting all variables in one vector, yt = [ut,∆pt, it]
′, the main equation

of the model can be written as

yt = ct +B1,tyt−1 + · · ·+Bk,tyt−k + ut t = 1, . . . , n. (4.3)

Here, ct is a vector of time-varying intercepts, the Bi,t for i = 1, . . . , k, are matrices with time-

varying coefficients, and ut is a vector of unobservable shocks with a time-varying covariance

matrix Σt. We follow the exact specification of Primiceri (2005) in allowing for rather flexible

processes that govern the variation of the model’s parameters over time. In essence, all time-

varying parameters (including those of the covariance matrix) are specified as random walk
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processes and the covariance matrix of the vector of innovations to these processes is assumed

to have a block diagonal structure. Details can be found in Section 2 of Primiceri (2005).

The model can be estimated using Bayesian methods. We follow the specification of priors

as in Primiceri (2005). We use Gibbs sampling to evaluate numerically the posterior distribution

of the parameters and unobserved states of the model. Note that we use the corrected algorithm

(Del Negro and Primiceri, 2015) that implies a different ordering of the Markov Chain Monte

Carlo steps.13

We use a recursive scheme to generate density forecasts, f̂yt+h(yt+h|Ft), with forecast hori-

zons h = 1, . . . , 4. The period between 1982q4 + h and 2014q2 + h is used as our evaluation

sample. Thus, we start by estimating the model using data until 1982q4 and constructing den-

sity forecasts for 1983q1, 1983q2, 1983q3, and 1983q4. Subsequently, we recursively add one

observation to our estimation sample and shift the forecast period one quarter forward. This

yields a sequence of 127 density forecasts for each forecast horizon.

The form of f̂yt+h(yt+h|Ft) is unknown in general. For h = 1 the conditional forecasts

follow a multivariate normal distribution conditional on the parameters of the model but not

unconditionally. For h > 1, a second source for deviations from a Gaussian distribution is given

by the fact that the conditional forecasts are non-linear functions of the model parameters.

Therefore, we estimate the predictive densities nonparametrically. All results are based on

samples of B = 5, 000 draws from the posterior distribution of the model parameters that we

obtain by keeping every 10th draw from a sample of 50,000 draws, after a burn-in phase of 5,000

draws. For each of these draws, we simulate corresponding draws from the implied predictive

density, ŷ
(b)
t+h, which reflect estimation uncertainty and shocks that occur during the forecast

period (see Krüger et al., 2016). We use a nonparametric kernel estimator with a (second order)

Gaussian kernel (with fixed bandwidths) to estimate the different conditional and marginal

distributions that are needed to compute the conditional PITs under all possible permutations.14

Since the data-driven determination of optimal bandwidths is computationally demanding, we

do so only for every twelfth period and keep the bandwidths fixed for all intermediate periods.

When we re-optimize the bandwidths, we rely on least-squares cross-validation (Li et al., 2013).15

As stated above, the distributions of the random variables Z2
t
∗

and Z2
t
†

are not known unless

the data is assumed to follow a multivariate normal distribution. In our case, however, we only

have simulated samples from unknown predictive densities. In order to compute the PITs for

Z2
t
∗

and for Z2
t
†
, we simulate their distribution by repeatedly computing Z2

t
∗

and Z2
t
†

under H0,

i. e., under the assumption that the realized values of yt over the evaluation sample are indeed

generated by the model that we use to form our predictive densities; see Section 2.2 for details

on the algorithm.

13We thank Fabian Krüger for providing his ‘bvarsv’ package for R which we used to estimate the model.
14For this application, d = 3 and we need to estimate F̂ut+h|∆pt+h,it+h

(ut+h|∆pt+h, it+h;Ft), in short notation

F̂u|∆p,i(ut+h), as well as F̂∆p|u,i(∆pt+h), . . ., F̂u|∆p(ut+h), F̂u|i(ut+h), . . .,F̂i|∆p(it+h), F̂u(ut+h), F̂∆p(∆pt+h), and

F̂i(it+h). These are a total of twelve (conditional) distributions that we have to estimate for each forecast period
and horizon.

15All nonparametric estimations are executed using the ‘np’ package for R (Hayfield and Racine, 2008).
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For comparison, we also check whether results differ if we use an approximation and assume

that all conditional forecasts follow a multivariate normal distribution (as, e. g., suggested by

Adolfson et al., 2007). In this case, the mean and the covariance matrix completely determine

the predictive density. We estimate both quantities as ȳt+h = (1/B)
∑B

b=1 ŷ
(b)
t+h and Σt+h =

(1/B)
∑B

b=1

(
ŷ
(b)
t+h − ȳt+h

)(
ŷ
(b)
t+h − ȳt+h

)′
.

The test proposed by Knüppel (2015) explicitly allows us to account for autocorrelated PITs.

Since for h > 1 the PITs will be subject to autocorrelation, we report results using this test along

with results based on the Neyman smooth (NS) test which is shown to have good properties in

our Monte Carlo simulations. Test results for h = 1 and h = 4 are summarized in Table 5.16

The upper panel lists results based on the nonparametric approach while the lower panel lists

those based on the approximative assumption of normally distributed predictive densities. We

show p-values for both tests, for the different transformations, and for all possible permutations

of the variables. For those transformations that are order invariant we show only one p-value.

We first focus on the nonparametric predictive densities. By and large, the tests based on our

preferred transformations, Z2∗ and Z2†, indicate for all forecast horizons that the conditional

predictive densities are well calibrated. At a 5 % significant level, only the NS test based on Z2†

marginally rejects H0 for h = 4 (p-value of 0.045). The evidence based on those transformations

that are not order invariant is mixed. The variation in p-values across permutations is large in

almost all cases, indicating that the “cheating” issue can be very relevant in practice even for

low-dimensional models when using transformations which are not order invariant.17 Assuming

a significance level of 5 %, decisions made based on the NS test (K test) are dependent on the

choice of the permutation in 2 (1) cases for h = 1 and in 4 (0) cases for h = 4. In general,

however, both tests do not reject the null hypothesis for the majority of permutations for h = 1.

In contrast, the NS test rejects the null of properly calibrated density forecasts in most cases

for h = 4 while the K test yields large p-values also in these cases.

The results corresponding to the approximative approach provide strong evidence against

the null hypothesis of well-calibrated predictive densities. All order-invariant transformations

yield p-values very close to 0 for both h = 1 and h = 4. For h = 1, the tests based on the other

transformations mostly reject the null hypothesis for the majority of permutations (the product

transformation P being an exception). For h = 4, the NS test tends to reject H0 while the K

test does not lead to any rejections of the null hypothesis. The latter dissent can be explained

by two factors: first, our Monte Carlo simulations showed that the NS test has more power, in

general, than the K test. Second, accounting for autocorrelation induces a tendency to reject

H0 less frequently.

In general, we conclude that (i) “cheating” can be a very relevant issue in practice, (ii)

the VAR model with time-varying parameters proposed by Primiceri (2005) seems to generate

well-calibrated multivariate density forecasts, and (iii) the latter result holds true for properly

estimated predictive densities but not when using a Gaussian approximation.

16Results for h = 2 and h = 3 are very similar and available on request.
17The average (across forecast horizons and transformations) standard deviation of p-values (across permuta-

tions) is 0.09 for the NS test and 0.12 for the K test.
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Table 5: Tests for proper calibration of macroeconomic forecasts

Nonparametric densities
NST KT

h = 1 S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2†

ut −∆pt − it 0.374 0.667 0.022 0.006 0.230 0.107 0.374 0.675 0.023 0.071 0.382 0.292
ut − it −∆pt 0.552 0.216 0.769 0.158 0.555 0.256 0.732 0.254
∆pt − ut − it 0.402 0.644 0.005 0.004 0.403 0.652 0.007 0.066
∆pt − it − ut 0.385 0.184 0.055 0.083 0.381 0.092 0.049 0.156
it − ut −∆pt 0.366 0.314 0.366 0.112 0.374 0.254 0.362 0.185
it −∆pt − ut 0.484 0.556 0.271 0.164 0.504 0.531 0.301 0.263

NST KT

h = 4 S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2†

ut −∆pt − it 0.052 0.042 0.208 0.034 0.063 0.045 0.440 0.301 0.638 0.361 0.487 0.457
ut − it −∆pt 0.051 0.038 0.194 0.088 0.384 0.219 0.413 0.449
∆pt − ut − it 0.010 0.067 0.024 0.022 0.245 0.442 0.331 0.323
∆pt − it − ut 0.020 0.007 0.000 0.007 0.185 0.107 0.121 0.286
it − ut −∆pt 0.122 0.004 0.755 0.039 0.525 0.087 0.839 0.355
it −∆pt − ut 0.032 0.008 0.240 0.129 0.416 0.187 0.488 0.444

Normal approximation
NST KT

h = 1 S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2†

ut −∆pt − it 0.032 0.110 0.058 0.001 0.001 0.000 0.031 0.147 0.045 0.012 0.012 0.006
ut − it −∆pt 0.027 0.116 0.154 0.033 0.151 0.163
∆pt − ut − it 0.032 0.125 0.021 0.032 0.162 0.016
∆pt − it − ut 0.007 0.150 0.005 0.009 0.138 0.003
it − ut −∆pt 0.005 0.166 0.009 0.007 0.164 0.014
it −∆pt − ut 0.009 0.149 0.008 0.013 0.128 0.018

NST KT

h = 4 S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2†

ut −∆pt − it 0.020 0.004 0.595 0.000 0.000 0.002 0.196 0.067 0.712 0.016 0.015 0.049
ut − it −∆pt 0.057 0.142 0.267 0.303 0.412 0.530
∆pt − ut − it 0.028 0.008 0.605 0.241 0.074 0.727
∆pt − it − ut 0.086 0.144 0.238 0.532 0.521 0.671
it − ut −∆pt 0.122 0.007 0.097 0.659 0.136 0.439
it −∆pt − ut 0.099 0.004 0.305 0.629 0.115 0.639

Notes: The table shows the p-values corresponding to the various combinations of tests on uniformity and transformations
of the multivariate PITs for all possible permutations of the data. For those transformations that yield order-invariant
test statistics, we only report one p-value. NST refers to Neyman’s smooth test (Neyman, 1937). KT refers to the test
proposed by Knüppel (2015).

5 Conclusion

In this paper we show how order-invariant tests can be derived for testing the proper calibration

of multivariate densities of arbitrary dimension. We demonstrate that distortions in rejection

rates can be very large when “cheating” based on existing tests which are not order invariant.

Furthermore, we show that the new tests have very good power properties for a wide range

of deviations from the null hypothesis; this holds true, in particular, when the data exhibit

fat tails that are not taken into account by the null model. We want to stress again that our

approach, which essentially relies on transforming the multivariate problem to a univariate one,

is compatible with any existing method for testing univariate distributions and we recommend

using the powerful Neyman smooth test in general, but the test by Knüppel (2015) whenever one

is concerned with autocorrelation. The new tests remain superior when using modified versions

for the case that parameters of the Gaussian DGP have to be estimated from the data (for

instance, when testing the in-sample fit of a density model), although a loss of power results in

this case.

In the previous section, we have presented two empirical applications to demonstrate the

usefulness of our approach. We believe there is a wide range of other applications in various

fields. First, the proposed methods can be applied whenever properly calibrated density forecasts

are crucial to form well-informed decisions (about production, investment, pricing, etc.) and
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could foster the use of multivariate density forecasts in situations in which decisions are based on

loss functions that take more than one variable as arguments. Second, the proposed methods can

be used to improve the specification of multivariate models taking higher moments into account;

obvious applications of this kind are common in financial econometrics, e. g., for estimating the

Value-at-Risk of a portfolio, but it can be expected that the modeling of the dependence structure

of higher moments of multivariate data becomes more common also for demand management or

in macroeconomics (e. g., Tay, 2015).

Our study leaves room for future research along several dimensions. First, especially for

financial applications, it would be interesting to extend those results of our paper which are

limited to the case of multivariate Gaussian processes under the null hypothesis to more general

settings. In particular, the application of the randomization device to test composite hypothesis

in the context of goodness-of-fit tests needs to be extended to more general distributions. Second,

we believe it may be possible to develop tests with even better power for very high-dimensional

densities; this could be achieved by selecting the terms entering the Z∗† transformation in a

data-driven way or by assigning weights to the conditional PITs entering the transformations.

This would be relevant, for instance, when modeling the joint behavior of future returns of large

portfolios and when working with densities derived from large-scale macroeconomic VAR models

(Crespo Cuaresma et al., 2014; Dovern et al., 2015). Finally, our approach may be compared

with tests based on the Kendall distribution function as studied in Ziegel and Gneiting (2014)

or Genest and Rivest (2001).
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Appendix A Proofs

Proof of Proposition 1. The proof is done by induction. To simplify notations we drop the
time subscript and replace the conditional PITs by a sequence of independent U(0, 1) random
variables U1, U2, . . ..

Step 1 (d = 2): For d = 2 the density is given by

fP2(P2) =
(−1)1

1!
log(P2) = − log2(P2),

which is equal to the density derived in Clements and Smith (2000). Note that we could also
start at d = 1, for which the density is equal to 1, corresponding to the uniform distribution.
Step 2 (d→ d+ 1): Consider the change of variables

Pd+1 = PdUd+1

The determinant of the Jacobian for the inverse transformation is

J = det
∂(Pd, Ud+1)

∂(Pd+1, Ud+1)
=

∣∣∣∣∣ 1
Ud+1

−Pd+1

U2
d+1

0 1

∣∣∣∣∣ =
1

Ud+1
.

The joint density of Pd+1 and Ud+1 is

fPd+1,Ud+1
(Pd+1, Ud+1) = fPd

(
Pd+1

Ud+1

)
· 1

Ud+1
=

(−1)d−1

(d− 1)!
logd−1

(
Pd+1

Ud+1

)
· 1

Ud+1
,

with 0 < Pd+1 < Ud+1 < 1. Therefore, the marginal PDF of Pd+1 is

fPd+1
(Pd+1) =

∫ 1

Pd+1

fPd

(
Pd+1

Ud+1

)
· 1

Ud+1
d · Ud+1 =

(−1)d

d!
logd(Pd+1) = fd+1(Pd+1).

To show that the CDF is correct first note that

f ′Pd(Pd) =
(−1)d−1

(d− 2)!
logd−2(Pd) ·

1

Pd
= −1 · fPd−1

(Pd) ·
1

Pd
.

It follows that

F ′(Pd) =

d−1∑
i=0

fPd−i(Pd)−
d−1∑
i=1

fPd−i(Pd) = fPd(Pd).

Proof of Proposition 2. Again, the proof is done by induction and again for simplicity we
consider a sequence of independent U(0, 1) random variables U1, U2, . . ..

Step 1 (d = 2): Consider the change of variables

P ∗2 = (U1 − 0.5)(U2 − 0.5) = U∗1U
∗
2 .

The determinant of the Jacobian is

J =
1

U∗2
,
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so the joint density of P ∗2 and U∗2 is given by

fP ∗2 ,U∗2 =

∣∣∣∣ 1

U∗2

∣∣∣∣ .
Integrating out U∗2 gives

fP ∗2 (P ∗2 ) =

∫ 1/2

−1/2

∣∣∣∣ 1

U∗2

∣∣∣∣ 2 · U∗2 = 2 ·
∫ 1/2

|2P ∗2 |

1

U∗2
= 2 log(U∗2 )

∣∣∣∣1/2
|2P ∗2 |

= 2 log

∣∣∣∣ 1

4P ∗2

∣∣∣∣ ,
where the second equality follows from the symmetry around 0 and the fact that |2P ∗2 | < |U∗2 | <
1/2.
Step 2 (d→ d+ 1): Consider the following change of variables

P ∗d+1 = P ∗d (Ud+1 − 0.5) = P ∗dU
∗
d+1.

The determinant of the Jacobian is

J =
1

U∗d+1

,

and therefore the joint density of P ∗d+1 and U∗d+1 is

fP ∗d+1,U
∗
d+1

= fP ∗d

(
P ∗d+1

U∗d+1

)∣∣∣∣∣ 1

U∗d+1

∣∣∣∣∣ .
The PDF of P ∗d+1 then is

fP ∗d+1
(P ∗d+1) =

∫ 1/2

−1/2
fP ∗d

(
P ∗d+1

U∗d+1

)∣∣∣∣∣ 1

U∗d+1

∣∣∣∣∣ d · U∗d+1

= 2 ·
∫ 1/2

|2dP ∗d+1|

2d−1

(d− 1)!
logd−1

(
U∗d+1

2d
∣∣P ∗d+1

∣∣
)

1

Ud+1
d · Ud+1

= 2 · 2d−1

(d− 1)!

1

d
logd

(
U∗d+1

2d
∣∣P ∗d+1

∣∣
) ∣∣∣∣1/2
|2dP ∗2 |

=
2d

(d)!
logd

∣∣∣∣∣ 1

2d+1P ∗d+1

∣∣∣∣∣ .
Again the symmetry around 0 and the fact that |2dP ∗d+1| < |U∗d+1| < 1/2 was used.

Now consider the CDF. Note that

f ′P ∗d(P
∗
d )

2d−1
=

1

(d− 2)!
log

∣∣∣∣ 1

2dP ∗d

∣∣∣∣ (−1)
1

Pd
.

Then using the product rule

F ′P ∗d
(P ∗d ) = 2d−1

d∑
i=1

1

(d− i)!
logd−i

∣∣∣∣ 1

2dP ∗d

∣∣∣∣P ∗d − P ∗d d∑
i=2

1

(d− i)!
logd−i

∣∣∣∣ 1

2dP ∗d

∣∣∣∣ 1

P ∗d

=
2d−1

(d− 1)!
logd−1

∣∣∣∣ 1

2dP ∗d

∣∣∣∣ = fP ∗d (P ∗d ).

The addition of 1/2 (see Proposition 2) ensures that the CDF lies between 0 and 1.
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Proof of Proposition 3. Under independence, we have U
i|1:i−1
t = U it , i. e., the conditional

CDF is equal to the marginal CDF. In this case, the product transformation reduces to Pt,d =∏d
i=1 U

i
t . This is clearly robust to permutations. The same argument can be made for the

location-adjusted version P ∗t,d. The stacked transformation then becomes St = [U1
t , . . . , U

d
t ]′,

which again is obviously order invariant.
Now consider the following two permutations: π1 = (1, 2, 3, . . . , d) and π2 = (2, 1, 3, . . . , d).

For these permutations, the product transformations only differ in their first two components.

So w.l.g., we only check that independence is needed for U1
t · U

2|1
t = U2

t · U
1|2
t to hold. The

latter equality is equivalent to
U1
t

U2
t

=
U

1|2
t

U
2|1
t

for all t, which does not hold in general, unless we

have independence.

For these two permutations order invariance in St is given only if [U1
t U

2|1
t ]′ is equal to

[U2
t U

1|2
t ]′ for all t, which again only holds under independence.

Proof of Proposition 4. W.l.g. let µ = 0, which can be achieved by demeaning the original
data. Rewrite Yt as

Y1,t = Z1,t

Y2,t = β2,1Y1,t + Z2t

...

Yd,t = βd,1Y1,t + βd,2Y2,t + . . .+ βd,d−1Yd−1,t + Zd,t,

with Zi,t normally distributed. Writing this more compactly we obtain

BYt = Zt,

where Zt = (Z1,t, . . . , Zd,t)
′, with

E(ZtZ
′
t) = D = diag


σ21
σ22|1

...
σ2d|1:d−1


and

B =


1 0 0 . . .
−β2,1 1 0 . . .
−β3,1 −β3,2 1 . . .

...
...

...
. . .


is the matrix of population regression coefficients, whose precise form in terms of the covariance
matrix is directly available using standard results on conditional normal random variables. It

holds that U1
t = Φ(Z1,t/σ1), U

2|1
t = Φ(Z2,t/σ2|1), . . . , U

d|1:d−1
t = Φ(Zd,t/σd|1:d−1). Furthermore,

note that
Cov(Yt) = E(YtY

′
t ) = Σ = B−1DB−1

′
.

Consequently,
Z2
t = (Z ′tD

−1/2)(D−1/2Zt) = Y ′tB
′D−1BYt = Y ′t Σ−1Yt.

The last term is clearly invariant to the ordering of the variables.

33



Proof of Proposition 5. Consider the generic term Φ−1
(
U
i|γki
t

)
∼ N (0, 1), where γki stands

for a set of indices representing the conditioning variables. Under normality, these terms are also
jointly normally distributed. Then the fact that Z∗2t has a mixture of independent χ2

1 random
variables follows directly from Lemma 17.1 in van der Vaart (1998). The weights of the mixture

are given by the eigenvalues of the covariance matrix of the terms Φ−1
(
U
i|γki
t

)
for all i = 1, . . . , d

and k = 1, . . . , 2d−1. This matrix is actually a correlation matrix due to the unit variance of the
inverse normal transformation. To compute this correlation matrix, we start with the covariance
between Y t

i|γki
and Y t

j|γlj
. Then, dropping the time index, Yi conditional on the vector Yγki

is

Yi|Yγki = Yi − Σi,γki
Σ−1
γki ,γ

k
i

Yγki
,

which has variance equal to Σii − Σi,γki
R−1
γki ,γ

k
i

Σγki ,i
. Consequently,

Φ−1
(
U
i|γki
t

)
=

Yi − Σi,γki
Σ−1
γki ,γ

k
i

Yγki

(Σii − Σi,γki
Σ−1
γki ,γ

k
i

Σγki ,i
)1/2

and analogously for Φ−1
(
U
j|γlj
t

)
. Then the computation of the covariance/correlation is straight-

forward. The reduced rank of RZ∗ follows from the fact that all conditional variables Y t
i|γki

are

a linear combination of the original d variables.

Proof of Proposition 6. Consider

Ẑi,t|1:i−1 =
Yi,t|1:i−1 − µ̂i|1:i−1

σ̂i|1:i−1
=

(Yi,t|1:i−1 − µi|1:i−1)− (µ̂i|1:i−1 − µi|1:i−1)
σi|1:i−1

(
σi|1:i−1

σ̂i|1:i−1

)
⇔Ẑi,t|1:i−1

(
σ̂i|1:i−1

σi|1:i−1

)
+

(
µ̂i|1:i−1 − µi|1:i−1

σi|1:i−1

)
=
Yi,t|1:i−1 − µi|1:i−1

σi|1:i−1
= Zi,t|1:i−1.

Now note that Zi,t|1:i−1 ∼ N (0, 1),
(
σ̂i|1:i−1

σi|1:i−1

)
∼
√
χ2
n−1/(n− 1), and

(
µ̂i|1:i−1−µi|1:i−1

σi|1:i−1

)
∼ N (0, 1/n).

Due to the independence of Yi,t|1:i−1 for i = 1, . . . , d, the estimated conditional means and vari-
ances are also independent across i. The result from the proposition then follows from Durbin
(1961) and Szkutnik (2012).

Proof of Proposition 7. First note that the joint distribution of the estimated vector of con-
ditional means consisting of the d · dn−1 terms µ̂i|γki , ∀i, k, denoted by µ̂c, is given by

µ̂c = [µ̂1, . . . , µ̂d·dn−1 ]′ ∼MVN (µc,ΣZ∗),

with a typical entry of ΣZ∗ being given by

Cov

(
Y
i|γki
t , Y

j|γlj
t

)
=

(Σi,j − Σj,γlj
Σ−1
γlj ,γ

l
j

Σγlj ,i
− Σi,γki

Σ−1
γki ,γ

k
i

Σγki ,j
+ Σi,γki

Σ−1
γki ,γ

k
i

Σγki ,γ
l
j
Σ−1
γlj ,γ

l
j

Σγlj ,j
),
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see Proposition 5 and its proof for details. Then for D = diag(σ21, . . . , σ
2
d·dn−1), the diagonal

matrix containing the diagonal elements of ΣZ∗ , we have

D−1/2(µ̂c − µc) ∼MVN (0,
1

n
RZ∗),

which justifies the randomization vector m. Furthermore,

Σ̂Z∗ ∼ W(ΣZ∗ , n− 1)/(n− 1)

and thus
D−1/2Σ̂Z∗ ∼ W(RZ∗ , n− 1)/(n− 1),

justifying the randomization vector s2.
Next, consider the distinct terms Z̃i,t|γki

= si|γki
Ẑi,t|γki

+ mi|γki
entering the transformation.

By the proof of Proposition 6, these terms are each N (0, 1) distributed, but they are not in-
dependent in general. However, the randomization by a single draw from the distribution si|γki
and mi|γki

does not alter the correlation, i. e., Corr
(
Z̃i,t|γki

, Z̃
jt|γk′j

)
= Corr

(
Zi,t|γki

, Z
jt|γk′j

)
. By

Proposition 5 the distribution of Z̃2∗
t follows.

Proof of Corollary 2. For the feasible test based on R̂Z∗ , due to the fact that Σ̂ → Σ as
n→∞ it follows that R̂Z∗ → RZ∗ as n→∞. Similarly, the eigenvalues of R̂Z∗ converge to the
eigenvalues of RZ∗ . The result follows by the continuous mapping theorem.
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Appendix B Tests for Uniformity

In this paper, we consider three tests for whether the transformation F̂Wt(Wt) is uniformly dis-
tributed: Neyman’s smooth test, the Kolmogorov-Smirnov test, and a test proposed in Knüppel
(2015) that allows us to account for autocorrelation in a straightforward manner.

B.1 Neyman’s Smooth Test

Bera and Ghosh (2002) and De Gooijer (2007) advocates testing uniformity with Neyman’s
smooth test (Neyman, 1937). The test statistic based on the first four normalized Legendre
polynomials is given by

Ψ2
4 =

4∑
i=1

u2i , (B.1)

with u21 = 3nµ̂21, u
2
2 = 45n(µ̂2−1/3)2

4 , u23 = 7n(5µ̂3−3µ̂1)2

4 , u24 = 9n(35(µ̂4−1/5)−30(µ̂2−1/3))2
64 , and

µ̂i =
(∑n

t=1(2Ut − 1)i
)
/n. Under H0 the statistic Ψ2

4 ∼ χ2
4.

B.2 Kolmogorov-Smirnov Test

This test is based on the maximum distance between the empirically observed distribution
function and the theoretical distribution function under H0. In our case, the latter is known to
be U(0, 1). The empirical distribution function is given by

Un(x) = Pn

(
F̂Wt(Wt) < x

)
=

1

n

n∑
t=1

I
(
F̂Wt(Wt) < x

)
(B.2)

and measures how many sample points are below x. Now the Kolmogorov-Smirnov test statistic
is given by the supremum of the set of distances between those two functions

D = sup
x
|Un(x)− Fu(x)|, (B.3)

with Fu denoting the CDF of the U(0, 1) distribution. Under H0, the (scaled) test statistic
asymptotically converges to the Kolmogorov distribution which is based on a Brownian bridge
(B(t)). Thus, for large n: √

nD ∼ sup
t∈[0,1]

|B(t)| (B.4)

Since for continuous distribution functions (such as in our case) the distribution of D under H0

is independent of this function, values for finite n are available in tabulated form.

B.3 Knüppel’s Test Based on Raw-Moments

The test by Knüppel (2015) is summarized in Section 2.4.
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Appendix C Additional Results from Monte Carlo Simulations

Table C.1: Size and power - known parameters (Kolmogorov-Smirnov test)

Size n = 50 n = 100 n = 200

S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2†

d = 2 0.051 0.048 0.047 0.050 0.049 0.050 0.047 0.052 0.051 0.049 0.049 0.050 0.053 0.053 0.049 0.049 0.050 0.049
d = 3 0.054 0.051 0.049 0.053 0.055 0.052 0.048 0.047 0.049 0.047 0.048 0.049 0.050 0.049 0.048 0.045 0.048 0.048
d = 4 0.051 0.046 0.052 0.046 0.046 0.046 0.048 0.052 0.056 0.051 0.052 0.053 0.052 0.049 0.050 0.048 0.050 0.052
d = 5 0.052 0.049 0.049 0.047 0.052 0.049 0.049 0.052 0.053 0.050 0.048 0.052 0.048 0.048 0.053 0.050 0.053 0.050
d = 6 0.054 0.050 0.051 0.049 0.051 0.053 0.051 0.045 0.054 0.052 0.051 0.052 0.048 0.050 0.050 0.049 0.050 0.052

Power against H1 n = 50 n = 100 n = 200

S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2†

d = 2 0.079 0.078 0.074 0.189 0.190 0.173 0.105 0.095 0.096 0.317 0.318 0.284 0.151 0.134 0.121 0.553 0.552 0.498
d = 3 0.090 0.088 0.079 0.262 0.261 0.223 0.126 0.121 0.097 0.471 0.469 0.410 0.224 0.199 0.144 0.762 0.761 0.685
d = 4 0.099 0.103 0.087 0.337 0.339 0.300 0.158 0.159 0.116 0.597 0.591 0.526 0.290 0.250 0.181 0.880 0.879 0.819
d = 5 0.114 0.114 0.092 0.421 0.415 0.362 0.180 0.185 0.129 0.710 0.701 0.639 0.372 0.333 0.208 0.944 0.941 0.907
d = 6 0.124 0.129 0.099 0.491 0.477 0.432 0.222 0.217 0.143 0.788 0.781 0.739 0.455 0.395 0.242 0.977 0.973 0.955

Power against H2 n = 50 n = 100 n = 200

S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2†

d = 2 0.041 0.054 0.095 0.063 0.064 0.080 0.049 0.063 0.134 0.077 0.078 0.105 0.053 0.073 0.211 0.101 0.102 0.169
d = 3 0.048 0.065 0.057 0.104 0.109 0.153 0.053 0.074 0.066 0.147 0.157 0.247 0.067 0.109 0.073 0.248 0.269 0.445
d = 4 0.055 0.076 0.068 0.157 0.172 0.238 0.062 0.093 0.077 0.249 0.285 0.398 0.093 0.148 0.089 0.438 0.498 0.677
d = 5 0.053 0.084 0.067 0.203 0.236 0.300 0.074 0.118 0.081 0.364 0.430 0.535 0.127 0.193 0.107 0.620 0.704 0.824
d = 6 0.064 0.097 0.076 0.270 0.316 0.372 0.095 0.145 0.088 0.482 0.560 0.644 0.171 0.257 0.135 0.772 0.852 0.911

Power against H3 n = 50 n = 100 n = 200

S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2†

d = 2 0.085 0.091 0.134 0.283 0.283 0.306 0.135 0.143 0.223 0.498 0.499 0.543 0.249 0.222 0.409 0.794 0.793 0.836
d = 3 0.109 0.142 0.113 0.483 0.496 0.545 0.212 0.233 0.156 0.790 0.805 0.838 0.484 0.412 0.289 0.977 0.981 0.988
d = 4 0.169 0.204 0.137 0.692 0.712 0.736 0.350 0.348 0.218 0.931 0.942 0.955 0.720 0.609 0.407 0.998 0.999 0.999
d = 5 0.227 0.260 0.167 0.815 0.840 0.857 0.487 0.458 0.264 0.984 0.987 0.991 0.888 0.744 0.518 1.000 1.000 1.000
d = 6 0.292 0.326 0.198 0.905 0.924 0.931 0.635 0.564 0.332 0.997 0.997 0.998 0.964 0.846 0.629 1.000 1.000 1.000

Power against H4 n = 50 n = 100 n = 200

S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2†

d = 2 0.055 0.054 0.052 0.164 0.165 0.152 0.084 0.070 0.074 0.281 0.281 0.243 0.129 0.104 0.104 0.497 0.499 0.442
d = 3 0.069 0.065 0.059 0.241 0.242 0.205 0.104 0.082 0.080 0.426 0.423 0.358 0.185 0.128 0.129 0.710 0.709 0.624
d = 4 0.088 0.074 0.066 0.333 0.330 0.286 0.131 0.097 0.092 0.566 0.560 0.484 0.249 0.163 0.165 0.859 0.856 0.778
d = 5 0.106 0.075 0.074 0.406 0.402 0.352 0.158 0.119 0.110 0.688 0.678 0.603 0.316 0.208 0.204 0.940 0.936 0.896
d = 6 0.118 0.091 0.083 0.503 0.491 0.445 0.196 0.136 0.139 0.784 0.769 0.715 0.388 0.237 0.252 0.979 0.975 0.959

Power against H5 n = 50 n = 100 n = 200

S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2†

d = 2 0.045 0.056 0.092 0.092 0.093 0.119 0.052 0.064 0.129 0.133 0.133 0.182 0.052 0.075 0.206 0.252 0.252 0.352
d = 3 0.049 0.070 0.059 0.157 0.167 0.209 0.058 0.091 0.062 0.301 0.319 0.398 0.084 0.133 0.073 0.594 0.622 0.716
d = 4 0.056 0.093 0.059 0.253 0.273 0.319 0.075 0.127 0.072 0.486 0.524 0.585 0.128 0.195 0.084 0.831 0.865 0.896
d = 5 0.071 0.102 0.073 0.359 0.394 0.418 0.104 0.165 0.082 0.653 0.702 0.736 0.195 0.284 0.104 0.945 0.963 0.970
d = 6 0.080 0.121 0.074 0.440 0.482 0.504 0.135 0.189 0.090 0.780 0.817 0.833 0.294 0.365 0.129 0.984 0.990 0.993

Notes: Rejection frequencies of Kolmogorov-Smirnov test based on the transformations introduced in Section 2.2 for the null hypothesis of multivariate
normality with σi = 1 for i = 1, . . . , d and ρij = 0.5 for all i 6= j. The alternative hypotheses are defined in Section 3. All Monte Carlo simulations
are based on 10,000 iterations.
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Table C.2: Size and power - known parameters (Knüppel test)

Size n = 50 n = 100 n = 200

S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2†

d = 2 0.056 0.056 0.055 0.056 0.056 0.057 0.053 0.052 0.051 0.051 0.053 0.051 0.048 0.049 0.051 0.048 0.048 0.048
d = 3 0.047 0.053 0.055 0.056 0.054 0.055 0.051 0.053 0.052 0.054 0.055 0.053 0.052 0.052 0.052 0.055 0.053 0.055
d = 4 0.050 0.057 0.057 0.060 0.059 0.059 0.047 0.049 0.053 0.054 0.054 0.053 0.048 0.052 0.056 0.052 0.053 0.056
d = 5 0.051 0.059 0.060 0.057 0.055 0.057 0.047 0.051 0.055 0.053 0.052 0.053 0.049 0.052 0.049 0.049 0.047 0.047
d = 6 0.053 0.060 0.056 0.057 0.059 0.057 0.051 0.054 0.046 0.049 0.051 0.049 0.055 0.056 0.052 0.048 0.052 0.050

Power against H1 n = 50 n = 100 n = 200

S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2†

d = 2 0.098 0.065 0.063 0.117 0.117 0.108 0.209 0.109 0.111 0.261 0.261 0.213 0.436 0.225 0.236 0.510 0.511 0.425
d = 3 0.146 0.072 0.071 0.174 0.175 0.148 0.313 0.123 0.136 0.375 0.378 0.315 0.641 0.260 0.287 0.718 0.719 0.616
d = 4 0.199 0.076 0.082 0.232 0.228 0.200 0.431 0.150 0.168 0.503 0.497 0.428 0.795 0.309 0.356 0.858 0.851 0.785
d = 5 0.258 0.085 0.097 0.306 0.298 0.258 0.541 0.159 0.190 0.628 0.617 0.556 0.894 0.363 0.423 0.933 0.926 0.882
d = 6 0.316 0.095 0.104 0.365 0.355 0.312 0.641 0.194 0.221 0.713 0.703 0.647 0.945 0.417 0.493 0.969 0.964 0.946

Power against H2 n = 50 n = 100 n = 200

S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2†

d = 2 0.041 0.062 0.072 0.054 0.054 0.059 0.053 0.066 0.106 0.063 0.064 0.097 0.071 0.079 0.196 0.086 0.086 0.174
d = 3 0.057 0.070 0.050 0.070 0.076 0.105 0.086 0.080 0.056 0.103 0.113 0.197 0.161 0.098 0.090 0.203 0.231 0.412
d = 4 0.082 0.073 0.062 0.101 0.114 0.153 0.143 0.090 0.075 0.177 0.211 0.314 0.297 0.131 0.133 0.371 0.444 0.626
d = 5 0.107 0.080 0.062 0.135 0.163 0.211 0.224 0.106 0.097 0.281 0.344 0.441 0.471 0.153 0.178 0.557 0.664 0.792
d = 6 0.140 0.085 0.060 0.174 0.214 0.257 0.305 0.110 0.116 0.375 0.470 0.552 0.629 0.193 0.224 0.716 0.822 0.890

Power against H3 n = 50 n = 100 n = 200

S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2†

d = 2 0.146 0.070 0.119 0.203 0.203 0.230 0.344 0.117 0.269 0.439 0.438 0.505 0.700 0.245 0.565 0.788 0.787 0.855
d = 3 0.304 0.098 0.125 0.393 0.406 0.447 0.654 0.195 0.289 0.752 0.771 0.821 0.953 0.400 0.624 0.979 0.983 0.992
d = 4 0.479 0.139 0.171 0.581 0.612 0.651 0.868 0.287 0.396 0.925 0.941 0.956 0.997 0.577 0.777 0.999 1.000 1.000
d = 5 0.662 0.183 0.216 0.749 0.782 0.804 0.955 0.378 0.509 0.981 0.985 0.989 1.000 0.731 0.879 1.000 1.000 1.000
d = 6 0.784 0.227 0.278 0.857 0.884 0.897 0.988 0.488 0.616 0.996 0.998 0.998 1.000 0.831 0.945 1.000 1.000 1.000

Power against H4 n = 50 n = 100 n = 200

S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2†

d = 2 0.116 0.083 0.092 0.119 0.120 0.094 0.173 0.114 0.128 0.228 0.229 0.181 0.304 0.174 0.227 0.477 0.478 0.379
d = 3 0.148 0.085 0.103 0.184 0.184 0.148 0.251 0.119 0.158 0.418 0.419 0.324 0.447 0.198 0.305 0.783 0.782 0.657
d = 4 0.194 0.087 0.122 0.285 0.283 0.220 0.311 0.133 0.198 0.617 0.611 0.504 0.576 0.235 0.396 0.944 0.940 0.877
d = 5 0.233 0.093 0.134 0.404 0.397 0.328 0.393 0.150 0.244 0.792 0.781 0.690 0.674 0.276 0.487 0.989 0.987 0.967
d = 6 0.280 0.101 0.149 0.510 0.494 0.433 0.468 0.163 0.296 0.892 0.875 0.821 0.752 0.311 0.580 0.998 0.998 0.995

Power against H5 n = 50 n = 100 n = 200

S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2†

d = 2 0.081 0.060 0.080 0.127 0.127 0.144 0.163 0.094 0.156 0.299 0.300 0.330 0.357 0.177 0.334 0.613 0.612 0.667
d = 3 0.156 0.083 0.066 0.258 0.267 0.274 0.323 0.147 0.119 0.561 0.583 0.599 0.644 0.300 0.272 0.899 0.911 0.923
d = 4 0.243 0.108 0.077 0.379 0.401 0.401 0.499 0.209 0.157 0.758 0.786 0.783 0.838 0.455 0.377 0.982 0.987 0.987
d = 5 0.335 0.127 0.086 0.498 0.528 0.531 0.650 0.284 0.209 0.880 0.896 0.892 0.927 0.594 0.483 0.996 0.998 0.997
d = 6 0.432 0.162 0.110 0.610 0.636 0.626 0.746 0.355 0.252 0.942 0.953 0.949 0.974 0.702 0.592 0.999 1.000 1.000

Notes: Rejection frequencies of Knüppel (2015) test based on the transformations introduced in Section 2.2 for the null hypothesis of multivariate
normality with σi = 1 for i = 1, . . . , d and ρij = 0.5 for all i 6= j. The alternative hypotheses are defined in Section 3. All Monte Carlo simulations
are based on 10,000 iterations.
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Table C.3: Size and power - estimated parameters (Kolmogorov-Smirnov test)

Size (original test) n = 50 n = 100 n = 200

S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2†

d = 2 0.046 0.040 0.005 0.007 0.007 0.006 0.046 0.041 0.005 0.006 0.007 0.008 0.042 0.038 0.005 0.006 0.006 0.006
d = 3 0.049 0.042 0.049 0.005 0.005 0.006 0.043 0.035 0.047 0.003 0.003 0.005 0.045 0.036 0.040 0.004 0.004 0.004
d = 4 0.051 0.043 0.047 0.004 0.005 0.005 0.046 0.038 0.047 0.003 0.003 0.004 0.044 0.035 0.046 0.003 0.003 0.004
d = 5 0.055 0.046 0.049 0.003 0.003 0.004 0.048 0.043 0.049 0.003 0.002 0.003 0.043 0.037 0.046 0.002 0.002 0.003
d = 6 0.053 0.043 0.047 0.004 0.003 0.005 0.048 0.036 0.048 0.003 0.002 0.004 0.047 0.037 0.047 0.003 0.002 0.002

Size (adjusted test) n = 50 n = 100 n = 200

S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2†

d = 2 0.050 0.043 0.006 0.052 0.057 0.061 0.052 0.047 0.006 0.051 0.051 0.063 0.053 0.048 0.005 0.049 0.052 0.063
d = 3 0.055 0.045 0.049 0.053 0.056 0.060 0.052 0.046 0.052 0.053 0.058 0.059 0.048 0.044 0.047 0.048 0.053 0.056
d = 4 0.057 0.051 0.051 0.051 0.059 0.062 0.051 0.046 0.054 0.051 0.055 0.056 0.052 0.046 0.054 0.049 0.051 0.054
d = 5 0.058 0.053 0.049 0.062 0.063 0.061 0.056 0.048 0.047 0.050 0.055 0.055 0.054 0.046 0.053 0.050 0.054 0.054
d = 6 0.066 0.054 0.050 0.059 0.060 0.057 0.054 0.048 0.050 0.055 0.058 0.057 0.056 0.049 0.051 0.052 0.051 0.053

Power against H4 n = 50 n = 100 n = 200

S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2†

d = 2 0.060 0.054 0.025 0.149 0.144 0.134 0.085 0.063 0.035 0.253 0.257 0.237 0.133 0.097 0.059 0.457 0.455 0.414
d = 3 0.071 0.054 0.059 0.175 0.168 0.147 0.100 0.077 0.077 0.355 0.352 0.282 0.178 0.116 0.133 0.642 0.641 0.530
d = 4 0.081 0.058 0.062 0.194 0.190 0.144 0.120 0.083 0.094 0.438 0.433 0.339 0.224 0.145 0.158 0.772 0.764 0.660
d = 5 0.080 0.064 0.063 0.215 0.200 0.140 0.139 0.095 0.098 0.526 0.503 0.382 0.270 0.162 0.188 0.870 0.864 0.767
d = 6 0.090 0.067 0.064 0.226 0.210 0.127 0.156 0.102 0.100 0.590 0.560 0.427 0.315 0.193 0.215 0.930 0.921 0.843

Notes: Rejection frequencies of Kolmogorov-Smirnov test based on the transformations introduced in Section 2.2 for the null hypothesis of multivariate
normality with σi = 1 for i = 1, . . . , d and ρij = 0.5 for all i 6= j. The alternative hypotheses are defined in Section 3. All Monte Carlo simulations
are based on 10,000 iterations.

Table C.4: Size and power - estimated parameters (Knüppel test)

Size (original test) n = 50 n = 100 n = 200

S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2†

d = 2 0.027 0.022 0.016 0.033 0.033 0.029 0.025 0.023 0.015 0.031 0.031 0.024 0.026 0.021 0.012 0.025 0.026 0.024
d = 3 0.026 0.023 0.038 0.044 0.043 0.036 0.029 0.023 0.036 0.033 0.033 0.030 0.029 0.024 0.034 0.029 0.030 0.026
d = 4 0.028 0.024 0.042 0.054 0.055 0.044 0.026 0.022 0.039 0.034 0.033 0.030 0.026 0.027 0.037 0.031 0.029 0.027
d = 5 0.033 0.027 0.043 0.061 0.058 0.045 0.029 0.023 0.037 0.037 0.037 0.035 0.026 0.024 0.037 0.032 0.033 0.033
d = 6 0.032 0.028 0.041 0.075 0.074 0.058 0.028 0.026 0.040 0.047 0.044 0.042 0.028 0.024 0.038 0.030 0.031 0.031

Size (adjusted test) n = 50 n = 100 n = 200

S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2†

d = 2 0.056 0.035 0.038 0.063 0.062 0.051 0.050 0.033 0.033 0.051 0.052 0.050 0.053 0.035 0.028 0.049 0.055 0.049
d = 3 0.056 0.033 0.062 0.065 0.067 0.062 0.055 0.034 0.057 0.058 0.057 0.056 0.051 0.033 0.058 0.054 0.057 0.053
d = 4 0.055 0.032 0.067 0.064 0.068 0.060 0.054 0.032 0.061 0.060 0.056 0.057 0.054 0.036 0.053 0.051 0.051 0.053
d = 5 0.061 0.030 0.070 0.074 0.077 0.068 0.055 0.031 0.064 0.059 0.062 0.060 0.052 0.032 0.055 0.054 0.058 0.058
d = 6 0.059 0.032 0.068 0.080 0.086 0.071 0.056 0.033 0.061 0.068 0.067 0.063 0.055 0.035 0.056 0.058 0.061 0.060

Power against H4 n = 50 n = 100 n = 200

S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2† S P P∗ Z2 Z2∗ Z2†

d = 2 0.093 0.054 0.060 0.099 0.093 0.087 0.152 0.086 0.093 0.206 0.201 0.169 0.283 0.151 0.173 0.436 0.434 0.349
d = 3 0.114 0.049 0.090 0.139 0.129 0.097 0.200 0.081 0.132 0.337 0.333 0.254 0.393 0.159 0.280 0.696 0.696 0.561
d = 4 0.131 0.054 0.090 0.176 0.168 0.119 0.246 0.091 0.165 0.479 0.468 0.353 0.496 0.189 0.341 0.878 0.877 0.764
d = 5 0.141 0.051 0.090 0.214 0.202 0.130 0.295 0.100 0.189 0.619 0.600 0.450 0.575 0.217 0.422 0.958 0.954 0.884
d = 6 0.147 0.049 0.092 0.246 0.232 0.126 0.323 0.102 0.202 0.716 0.701 0.536 0.644 0.246 0.481 0.987 0.985 0.953

Notes: Rejection frequencies of Knüppel (2015) test based on the transformations introduced in Section 2.2 for the null hypothesis of multivariate
normality with σi = 1 for i = 1, . . . , d and ρij = 0.5 for all i 6= j. The alternative hypotheses are defined in Section 3. All Monte Carlo simulations
are based on 10,000 iterations.
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