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Introduction and motivation

Motivation

In the last 10/15 years intensive work in applied macro-econometrics in two
areas:

Large models
Time varying parameter models

Large models have become the dominant framework in forecasting

TVP models, especially TVP VARs, extensively used for policy analysis

Interest in connecting the two fields: Large TVP models
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Introduction and motivation

Large models

Problem of large models: parameter proliferation/overfitting

Shrink the information

Dynamic factor models

Factor augmented VARs

Shrink the parameters

Penalized regressions (Ridge/Lars/Lasso)

Large Bayesian VARs with tight Priors

De Mol, Giannone, Reichlin (2008) show that there is indeed a connection
between the two approaches
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Introduction and motivation

TVP-VARs

Parametric

Bayesian

small TVP-BVARs (Cogley/Sargent/Primiceri)

Score-driven

AR with T.V.P. and heteroschedastic errors (Delle Monache and Petrella,
2015), now extending to VARs

Non-Parametric

Giraitis, L., G. Kapetanios, and T. Yates (2014): AR with T.V.P. and
heteroschedastic errors

Giraitis, L., G. Kapetanios, and T. Yates (2014, GKY henceforth): VAR with
T.V.P. and heteroschedastic errors
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Introduction and motivation

TVP-VARs in data rich environment

Parametric

Koop and Korobilis (2013) large Bayesian TVP-VAR

Non-parametric

THIS PAPER!
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Introduction and motivation

Roadmap of the presentation

Methodology

The GKY estimator

Taking the GKY estimator to large data: stochastic constraints

Special cases: TVP Ridge estimator, TVP VAR with Litterman type
constraints

Applications

Forecasting in a data rich environment

Small sample performance and a comparison with the parametric estimator

Time-varying effects of oil price shocks on US industrial production
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Introduction and motivation

The GKY estimator 1

Setup of the problem:

y ′t
1×n

= x ′t Θt + u′t
1×n

, t = 1, ...,T

x ′t
1×k

= [y ′t−1, y ′t−2,...,y
′
t−p, 1]

Θt
k×n

= [Θ′t,1, Θ
′
t,2, ..., Θ′t,p,A′t ]

′

where k = (np + 1). At each time t you have nk parameters to estimate.
Applying the vec operator to both sides we obtain:

yt
n×1

= (In ⊗ x ′t)
n×nk

βt
nk×1

+ ut
n×1

,

where βt = vec(Θt).
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Introduction and motivation

The GKY estimator 2

GKY propose the following estimator:

β̂t
GKY

nk×1
= In ⊗

[
T

∑
j=1

wH
j,t

(
x ′j xj

)]−1

︸ ︷︷ ︸
k×k︸ ︷︷ ︸

nk×nk

[
vec

T

∑
j=1

wH
j,t

(
x ′j y
′
j

)]
︸ ︷︷ ︸

nk×1

where wH
j,t is a kernel (weight) function that discounts sample moments

It depends on

distance between t (time of interest for the parameters) and j (time of
reference of the sample moment)

normalized by H (the bandwidth). The smaller the bandwidth the stronger
the discounting

kernel
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Introduction and motivation

Gaussian kernel

wH
j,t =

Kj,t(H)

∑T
j=1 Kj,t(H)

where

Kj,t(H) = (1/
√

2π)exp

[
−1

2

(
j − t

H

)2
]

When forecasting

Kj,t(H) = (1/
√

2π)exp

[
−1

2

(
j − t

H

)2
]
I (j ≤ t)
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Introduction and motivation

The GKY kernel estimator: properties

Consistency, need to assume

Persistence in parameters
Boundedness (up to bounded random walks)

Computationally convenient:
1 you can have larger n than in Bayesian TVP-VARs
2 you can have larger p than in Bayesian TVP-VARs (monthly variables)

BUT HOW LARGE can n be?

As n increases the GKY estimator will overfit

This is the main motivation of the paper
Can you regularise/penalize the GKY estimator?
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Introduction and motivation

Penalizing the GKY estimator via stochastic constraints

Basic idea: mix the GKY estimator with stochatic constraints, see Theil and
Golbderger (1961)

 yt
n×1

√
λr

nk×1

 =

 In ⊗ x ′t
n×nk

√
λ R

nk×nk

 βt
nk×1

+

 ut
n×1

ur
t

nk×1



A number of estimators can be derived from a similar setup

Ridge estimator
Unbiased Ridge estimator
Dummy implementation of priors in Bayesian VARs

Assumptions on ut and ur
t

ut is a martingale difference sequence
var (ut ) = Σn, var(ur

t ) = Ik ⊗ Σn

KMV (King’s/Bocconi/BdI) 2016 11 / 42



Introduction and motivation

Penalizing the GKY estimator via stochastic constraints

Basic idea: mix the GKY estimator with stochatic constraints, see Theil and
Golbderger (1961)

 yt
n×1√

λr
nk×1

 =

 In ⊗ x ′t
n×nk√
λ R

nk×nk

 βt
nk×1

+

 ut
n×1
ur

t
nk×1



A number of estimators can be derived from a similar setup

Ridge estimator
Unbiased Ridge estimator
Dummy implementation of priors in Bayesian VARs

Assumptions on ut and ur
t

ut is a martingale difference sequence
var (ut ) = Σn, var(ur

t ) = Ik ⊗ Σn

KMV (King’s/Bocconi/BdI) 2016 11 / 42



Introduction and motivation

Penalizing the GKY estimator via stochastic constraints

Basic idea: mix the GKY estimator with stochatic constraints, see Theil and
Golbderger (1961)

 yt
n×1√

λr
nk×1

 =

 In ⊗ x ′t
n×nk√
λ R

nk×nk

 βt
nk×1

+

 ut
n×1
ur

t
nk×1


A number of estimators can be derived from a similar setup

Ridge estimator
Unbiased Ridge estimator
Dummy implementation of priors in Bayesian VARs

Assumptions on ut and ur
t

ut is a martingale difference sequence
var (ut ) = Σn, var(ur

t ) = Ik ⊗ Σn

KMV (King’s/Bocconi/BdI) 2016 11 / 42



Introduction and motivation

Penalizing the GKY estimator via stochastic constraints

 yt
n×1√

λr
nk×1

 =

 In ⊗ x ′t
n×nk√
λ R

nk×nk

 βt
nk×1

+

 ut
n×1
ur

t
nk×1


Now simply apply the GKY estimator to the augmented model

β̂t =


In ⊗

T

∑
j=1

wH
j ,txjx

′
j︸ ︷︷ ︸


nk×nk

+ λR ′R


−1 [

T

∑
j=1

wH
j ,t

(
In ⊗ xj

)
yj + λR ′r

]

λ = 0 β̂t = β̂t,GKY

λ→ ∞ β̂t → βC = (R ′R)−1(R ′r)

The estimator depends on two constants, λ and H
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Introduction and motivation

Focus on cases where R has a kronecker structure

If the constraints are such that R has a kronecker structure the model can be cast
in matrix form.
Use the following definitions:

R
nk×nk

= (In ⊗ R
k×k

), ur
t

kn×1
= vec( ur

t
k×n

), r
kn×1

= vec( r
k×n

)

 y ′t
1×n√

λr
k×n

 =

 x ′t
1×k√

λR
k×k

 Θt
k×n

+

 u′t
1×n

ur
t

k×n


which we can re-write as:

y∗t
(k+1)×n

= x ′∗t Θt + u∗t ,

Θ̂t
k×n

=

(
T

∑
j=1

wj,tx
∗
j x
∗′
j

)
︸ ︷︷ ︸

k×k

−1( T

∑
j=1

wj,tx
∗
j y
∗
j

)
,
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Introduction and motivation

The penalized GKY estimator as a linear combination of
two estimators

The estimator can be written as

β̂t = Aβ̂t,GKY + (I − A)βC

Hence it is a linear combination of:

the unbiased (time varying) GKY estimator

a time invariant structure imposed by the constraints

This helps in understanding the bias/variance trade off
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Introduction and motivation

Bias/variance trade off in the penalized GKY estimator

Theorem (asymptotic distribution/bias)

Let

ut be a martingale difference sequence with finite fourth moments

the coefficients evolve slowly

sup
j≤h
‖βt − βt+j‖ = Op

(
h

t

)
.

H = o(T 1/2)

Then (
Γ∗−1

w ,t Γ∗∗ww ,t Γ∗−1
w ,t ⊗ Σn

)− 1
2
√
H
(

β̂t − βt − βB
t

)
→d N (0, I )

βB
t = p lim S−1

w λR
′
(r − Rβt)
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Introduction and motivation

Bias/variance trade off in the penalized GKY estimator

Theorem (variance)

Let
β̂t = [E + F ]−1

[
E β̂t,GKY + λR ′r

]
Then

var(β̂t) = [E + F ]−1
[
Evar(β̂t,GKY )E

]
[E + F ]−1

and for any vector q

q′
(
var(β̂t,GKY )− var(β̂t)

)
q ≥ 0

is a positive semi-definite matrix: i.e. the penalty induces a variance reduction
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Introduction and motivation

Time varying volatilities

If the VAR residuals have time varying covariance matrix, follow the two step
procedure by Giraitis et al. (2012)

Ψ̂t =
T

∑
j=1

wj,t(HΨ)utu
′
t

and use a GLS correction to obtain

βt =

[
T

∑
j=1

wj,t

(
Ψ̂−1

j ⊗ x ′j xj

)
+ R ′Ψ̃t

−1
R

]−1 [ T

∑
j=1

wj,tvec
(
x ′j y
′
j Ψ̂−1

j

)
+ R ′Ψ̃t

−1
r

]

Computation slows down: now have to invert nk dimensional matrices

In an empirical application we do not find any advantage from applying this
GLS correction
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Introduction and motivation

Ridge/Litterman type estimators

Ridge penalty

r =
(

0k×n

)
R = Ik

Litterman penalty

r =

(
diag(δ1σ1, δ2σ2, δ3σ3, ..., δnσn)

0n(p−1)+1×n

)
R =

(
Σ 0
0 σ2

c

)
, where

Σ = diag(1, 2, 3, ..., p)⊗ diag(σ1, σ2, ..., σn)
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Introduction and motivation

Selecting λ and H : Method 1

Adapt the method by Banbura, Giannone, and Reichlin (2010)

Intuition: penalize the overfitting of the large model up to the point where
you achieve the same fit as a small system

The loss function to be minimized is:

Lfit(λ,H) =

∣∣∣∣∣ n1

∑
i=1

rss i
n(λ,H)

rss i
RW

−∑
i

rss i
n1

rss i
RW

∣∣∣∣∣
where n1 is a subset of variables of interest
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Introduction and motivation

Selecting λ and H : Method 2

The second method aims at penalizing poor average forecasting performance
over recent observations

At each step t in the forecast exercise consider a relatively short window of
recent data t − L− h, t − L− h+ 1, . . . , t − 1− h, then

The loss function to be minimized is:

Lmse(λ,H) =
n1

∑
i=1

mse i
h,L(λ,H)

var(yt,i )
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Introduction and motivation

Practical implementation

Estimator is easy to compute

Feasible solution is represented by a grid search approach

We use a wide (38 elements) grid for (the reciprocal) of λ, ϕ = 1/λ

ϕgrid = 10−10, 10−5, 10−4, 10−3, ..., 1

s for the kernel wj,t , we use a 6 points grid for H:

Hgrid = 0.5, 0.6, 0.7, 0.8, 0.9, 1,

Yet the best results are obtained by pooling, either with equal weights or with
weights based on the above criteria
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Introduction and motivation

Finite sample properties

DGP-1: random walk coefficients [0.85 1] + random walk volatilities

Yt = Ψt Yt−1 + εt

Ψt = Ψt−1 + ηt

DGP-2: occasionally breaking coefficients [0 1] + random walk volatilitiess

Yt = Ψt Yt−1 + εt

Ψt = (1− I (τ))Ψt−1 + I (τ)Ψt−1ηt

τ governs the probability of coefficients changing (on average once every 10 years)

DGP-3: sine shaped coefficients [-1 1] + random walk volatilities

Yt = Ψt Yt−1 + εt

Ψt = sin(10πt/T ) + ηt

In all DGPs we assume random walk stochastic volatilities

ε it = uit exp(λit )

λit = λit−1 + ηit

where uit v N(0, 1) and ηit v N(0, ση). We calibrate ση = 0.01
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Introduction and motivation

Comparison with parametric estimator

Alternative approach: (TVP-VAR) by Koop and Korobilis (2013)

Full parametric specification

yt = Zt βt + εt , εt ∼ N(0, Σt)

βt+1 = βt + ut+1, ut+1 ∼ N(0,Qt+1)

To obtain the βt need estimate of Qt and Σt from Kalman filter

Bayesian estimation with MCMC unfeasible for n > 4, 5

Hint: what binds is the size of the state vector βt , which is n(np + 1)

Koop and Korobilis (2013) propose a solution following Ljung (1992) and
Sargent (1999)
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Introduction and motivation

Forgetting factors

Simplification 1

Qt =

(
1− γ

γ

)
Pt−1/t−1

Pt−1/t−1 comes from the Kalman filter: cov(βt−1/It−1)

Time variation Qt is a fraction of the uncertainty on βt

Simplification 2

Σ̂t = κΣ̂t−1 + (1− κ)vtv
′
t

vt is the prediction error from the Kalman filter

Hence

The Kalman filter gives βt conditional on Qt and Σt

But Qt and Σt are themselves function of the Kalman filter output

Everything driven by two constants γ and κ + Initial condition
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Introduction and motivation

Main differences with the parametric approach

1 Driftless random walk assumption for computational convenience. If the true
DGPs is very different it could result in poor performance.

2 Curse of dimensionality: for 20 variables and 4 lags (KK application with
quarterly data) βt contains 1620 elements. Monthly models untractable

3 The prior only on the initial condition β1 dies out relatively quickly. Also, the
longer the sample size, the lower the effect of the prior on the parameter
estimates. In our estimator the stochastic constraints are effective at each
point in time.

But in practice?
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Introduction and motivation

Table: 1 step ahead, relative RMSEs

T Parametric Non parametric
Inv. RMSE Equal weights

DGP 1 (Random walk coefficients)
n=7

100 1 1.004 1.005
150 1 0.999 1.000
200 1 0.997 0.997

n=15
100 1 1.021 1.024
150 1 1.012 1.013
200 1 1.006 1.007

DGP 2 (Occasionally breaking coefficients)
n=7

100 1 0.96 0.96
150 1 0.96 0.96
200 1 0.96 0.96

n=15
100 1 0.96 0.96
150 1 0.95 0.95
200 1 0.94 0.94

DGP 3 (Sine function coefficients)
n=7

100 1 0.95 0.96
150 1 0.96 0.98
200 1 0.97 0.99

n=15
100 1 0.87 0.88
150 1 0.86 0.87
200 1 0.85 0.86
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Introduction and motivation

Empirical application 1: forecasting

Pseudo real time forecasting exercise: monthly data from 1960 to 2013

Forecast CPI/Employment/Fed Fund Rates 1 to 24 steps ahead

Experiment with datasets of different sizes: n=20, 78

We organize the forecast exercise around three questions

Q.1 Does time variation actually improve forecast accuracy?

YES

Q.2 Can the performance of medium-sized TVP-VARs be approximated by
that of large VARs with constant coefficients (Stock and Watson, 2012,
Aastveit, Carriero, Clark and Marcellino, 2014)

NOT (at long horizons)

Q.3 Does it pay off to go beyond a medium size system, i.e. does going from
a 20 to a 78 TVP-VAR improve forecast accuracy?

NOT

KMV (King’s/Bocconi/BdI) 2016 27 / 42



Introduction and motivation

Empirical application 1: forecasting

Pseudo real time forecasting exercise: monthly data from 1960 to 2013

Forecast CPI/Employment/Fed Fund Rates 1 to 24 steps ahead

Experiment with datasets of different sizes: n=20, 78

We organize the forecast exercise around three questions

Q.1 Does time variation actually improve forecast accuracy?

YES

Q.2 Can the performance of medium-sized TVP-VARs be approximated by
that of large VARs with constant coefficients (Stock and Watson, 2012,
Aastveit, Carriero, Clark and Marcellino, 2014)

NOT (at long horizons)

Q.3 Does it pay off to go beyond a medium size system, i.e. does going from
a 20 to a 78 TVP-VAR improve forecast accuracy?

NOT

KMV (King’s/Bocconi/BdI) 2016 27 / 42



Introduction and motivation

Empirical application 1: forecasting

Pseudo real time forecasting exercise: monthly data from 1960 to 2013

Forecast CPI/Employment/Fed Fund Rates 1 to 24 steps ahead

Experiment with datasets of different sizes: n=20, 78

We organize the forecast exercise around three questions

Q.1 Does time variation actually improve forecast accuracy?

YES

Q.2 Can the performance of medium-sized TVP-VARs be approximated by
that of large VARs with constant coefficients (Stock and Watson, 2012,
Aastveit, Carriero, Clark and Marcellino, 2014)

NOT (at long horizons)

Q.3 Does it pay off to go beyond a medium size system, i.e. does going from
a 20 to a 78 TVP-VAR improve forecast accuracy?

NOT

KMV (King’s/Bocconi/BdI) 2016 27 / 42



Introduction and motivation

Empirical application 1: forecasting

Pseudo real time forecasting exercise: monthly data from 1960 to 2013

Forecast CPI/Employment/Fed Fund Rates 1 to 24 steps ahead

Experiment with datasets of different sizes: n=20, 78

We organize the forecast exercise around three questions

Q.1 Does time variation actually improve forecast accuracy?

YES

Q.2 Can the performance of medium-sized TVP-VARs be approximated by
that of large VARs with constant coefficients (Stock and Watson, 2012,
Aastveit, Carriero, Clark and Marcellino, 2014)

NOT (at long horizons)

Q.3 Does it pay off to go beyond a medium size system, i.e. does going from
a 20 to a 78 TVP-VAR improve forecast accuracy?

NOT
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Q.1 Does time variation improve forecast accuracy?

Forecast Horizon
1 3 6 12 18 24

R
el

at
iv

e 
R

M
S

E

0.25

0.5 

0.75

1   

1.2 
CPI

Forecast Horizon
1 3 6 12 18 24

R
el

at
iv

e 
R

M
S

E

0.25

0.5 

0.75

1   

1.2 
Fed Funds Rates

Forecast Horizon
1 3 6 12 18 24

R
el

at
iv

e 
R

M
S

E

0.25

0.5 

0.75

1   

1.2 
Employment

Figure: Root Mean Square Forecast Errors: combined TVP-VARs versus constant
coefficients BVAR (20 variables VARs)
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Q.1 Does time variation improve forecast accuracy?

72 75 78 81 84 87 90 93 96 99 02 05 08 11

0

0.5

1

1.5

2

2.5

3

3.5

4

3 steps ahead

CPI
Fed Funds Rates
Employment

72 75 78 81 84 87 90 93 96 99 02 05 08 11
0

1

2

3

4

5

12 steps ahead

72 75 78 81 84 87 90 93 96 99 02 05 08 11
0

1

2

3

4

5

6

18 steps ahead

72 75 78 81 84 87 90 93 96 99 02 05 08 11
0

1

2

3

4

5

24 steps ahead

Figure: Cumulative sum of squared forecast error differentials: combined TVP-VARs
versus constant coefficients BVAR (20 variables VARs)
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Q.2 is time variation due to omitted variables?
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Figure: Root Mean Square Forecast Errors: 20 variables combined TVP-VARs versus 78
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Q.3 do we need more than n=20?
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Figure: Root Mean Square Forecast Errors: 20 variables combined TVP-VARs versus 78
variables combined TVP-VARs
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Comparison with the parametric estimator
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Figure: Forecast accuracy, nonparametric and parametric estimators
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Structural analysis with large models

Add granularity to the evidence of instability in the oil price/macroeconomy
relationship, Edelstein and Kilian (2007), Blanchard and Gali (2009),
Baumeister and Peersman (2013)

Some authors have emphasized improvements in car efficiency as a crucial
factor for lower impact of oil price shocks on output and decreasing elasticity
of oil demand mpg

We assess this channel by looking at the time varying responses of sectorial
IP to an oil price shock

Strategy: augment the baseline 20 variables VAR with 8 industrial production
series split by product destination including durable consumption (mostly
vehicles)

Time varying volatilities modeled in two steps like in Giraitis et al. (2012)
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Industrial production Indexes by market group

Market group Acronym Weight
Industrial Production Index INDPRO 100
Industrial Production: Business Equipment IPBUSEQ 9.18
Industrial Production: Consumer Goods IPCONGD 27.2
Industrial Production: Durable Consumer Goods IPDCONGD 5.59
Industrial Production: Nondurable Consumer Goods IPNCONGD 21.62
Industrial Production: Final Products (Market Group) IPFINAL 16.58
Industrial Production: Materials IPMAT 47.03
Industrial Production: Durable Materials IPDMAT 17.34
Industrial Production: Nondurable Materials IPNMAT 11.44

Table: Industrial production indexes by market group
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Overall industrial output
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Bus. equipment & Durable Materials as relevant as Durable

consumption
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Conclusions

We propose a nonparametric estimator for large TVP-VAR

The estimator is a penalized version of the GKY estimator

Like every penalized estimator it offers a bias/variance trade-off

Selection of the penalty parameter and of the bandwidth via a number of
cross-validation strategies, but pooling works very well in practice

Forecast accuracy: it outperforms constant parameter benchmarks

Compared to a parametric estimator:
1 It overcomes limitations in terms of size
2 Compares favourably in terms of actual forecast accuracy
3 In Monte Carlo exercises it proves robust to heteroschedastic errors and

different specifications for the VAR coefficients

It proves useful for structural analysis

THANKS!
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Example: gaussian kernel function
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Average Mileage per Gallon (MPG)
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Share of vehicles by Mileage per Gallon (MPG)
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