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Key issues:
< The set p could be large (p — T).

—  Which predictor matters and when is unknown a priori...

< ...this matters even more in dynamic settings.
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A single predictor can be “active”  Multiple predictors can be “active”
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Method = Novel variational Bayes inference approach:

— Minimal hyper-parameters tuning.
< Posterior concentration properties comparable to MCMC.
< On-line dimension reduction (efficiency).
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A single predictor can be “active”  Multiple predictors can be “active”
over multiple time periods. in a single time period.
— Intensive margin. — Extensive margin.

Empirical exercise(s) = Economic forecasting (point and density):

— Inflation predictability over several quarterly horizons based on +230
macroeconomic predictors (FRED-QD data).

— Equity risk premium predictability one-month ahead based on +150
anomaly/characteristic-based portfolios.



Some reference literature

A non-exhaustive list of references:

< Bayesian methods for variable/model selection:
(e.g., Mitchell & Beauchamp (1988), George & McCulloch (1997),
Nakajima & West (2013), Kalli & Griffin (2014), Kowal et al. (2019),
Bitto & Friihwirth-Schnatter (2019), Koop & Korobilis (2020), Rotkova
& McAlinn (2021), Giannone et al. (2021), etc.)

< Economic forecasting in large-dimensional models:
(e.g., Stock & Watson (2007), Stock & Watson (2010), Faust & Wright
(2013), Huber et al. (2021), Dong et al. (2022), etc.)

< Variational Bayes inference methods:
(e.g., Ormerod & Wand (2010), Ormerod et al. (2017), Gefang et al.
(2019), Koop & Korobilis (2020), Chan & Yu (2022), etc.)
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Bayesian model specification

Dynamic Bernoulli-Gaussian (BG) regression specification:

p
Ye = Zﬁjtxjtfl + &ty et ~N(0,07),
j=1

where
Bjt = Vjtbjt, and vj¢ € {0,1},

Dynamics based on two latent processes:

— Time-varying coefficients b;, j =1,...,p.

— Dynamic variable indicator v, j =1,...,p.
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In other words...
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Bayesian model specification

For the latent process b;; we assume:

bjs = bjs—1 + ujy, Ujp ~ N(O,nf-),

12



Bayesian model specification

For the latent process b;; we assume:

bjt = bji1 +uje,  uj ~N(©0,77), = bj~Np1(0,7;Q7")

I+kt =1 ... 0 0
- 2 b0 GAUSSIAN MARKOV
with Q= : PR RANDOM FIELD (GMRF)
0 -1 2 -1 REPRESENTATION
0 0 -1 1

12



Bayesian model specification

For the latent process b;; we assume:

bjt = bji1 +uje,  uj ~N(©0,77), = bj~Np1(0,7;Q7")

I+kt =1 ... 0 0
- 2 b0 GAUSSIAN MARKOV
with Q= : LTl T RANDOM FIELD (GMRF)
0 -1 2 -1 REPRESENTATION
0 0 -1 1

Similarly, for h; = log o? we assume:

he = hi 1 + ey, et ~ N (0,V2) )



Bayesian model specification

For the latent process b;; we assume:

bjt = bji1 +uje,  uj ~N(©0,77), = bj~Np1(0,7;Q7")

I+kt =1 ... 0 0
- 2 b0 GAUSSIAN MARKOV
with Q= : PR RANDOM FIELD (GMRF)
0 -1 2 -1 REPRESENTATION
0 0 -1 1

Similarly, for h; = log o? we assume:

hi = hi—1 + eq, et ~N(0,v%), = h~N,(0,°Q")

GMRF




Bayesian model specification

For the dynamics of sparsity we assume:

Yjt|lwje ~ Bern (expit (w;¢))
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Yjt|wje ~ Bern (expit (wjz)) i

wj ~ Np41(0, ngQ_l)

GMRF
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Bayesian model specification

For the dynamics of sparsity we assume:

Yjt|lwje ~ Bern (expit (w;¢)) = wj ~ Nn+1(07§?Q

_U

GMRF

Such that the marginal for vj1,...,vjn

n
p(")/jl, . ,’an - / Hp ’Y]f|wjt dw]?
t=1

has correlated components.

— i.e., time series dependence driven by w;.
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Bayesian model specification

For the dynamics of sparsity we assume:

'yjt|wjt ~ Bern (expit (th)) ——

wj ~ Nn+1(07§72‘Q_

")

Such that the marginal for vj1,...,vjn

GMRF

n
p(")/jl, . ,’an - / Hp ’Y]f|wjt dw]?
t=1

has correlated components.

— i.e., time series dependence driven by w;.

Prior distributions for the variances parameters.

— 12 ~IG(A,,B,)), T]JQ- ~1G(4,, By), and ij ~

=0.01 =0.01

IG(Ag, Be).
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How posterior estimates are affected by the choice of (A¢, Be)?
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How posterior estimates are affected by the choice of (A¢, Be)?

< Scenario A = A¢ constant and By — +00.
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Scenario A: B¢ — +oco. (a) Depicts the variational correlation matrix for the process
{wjt}y, obtained from X, ). (b) Plots the trajectory of {114(w;,)}7=y- (c) Shows
the effect on the posterior inclusion probabilities estimated {,uq(ﬂ/jt)}le compared to
the simulated (red points).
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Digression: Some comparative statics on the priors

How posterior estimates are affected by the choice of (A¢, B¢)?

— Scenario B = B¢ constant and A¢ — 4-00.
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Scenario B: A¢ — +oco. (a) Depicts the variational correlation matrix for the process
{wj,t}}, obtained from X, . (b) Plots the trajectory of {14(y,,)}i=1- (c) Shows
the effect on the posterior inclusion probabilities estimated {HQ("/jt)}?:l compared to
the simulated (red points).
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Digression: Some comparative statics on the priors

How posterior estimates are affected by the choice of (A¢, Be)?

< Scenario C = A¢/Be =— «¢1, c1 € RT.
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Scenario C: A¢/Be — c1, c1 € RT. (a) Depicts the variational correlation matrix for
the process {w;¢};"; obtained from X, ). (b) Plots the trajectory of {}i4(w;,)}i=1-
(c) Shows the effect on the posterior inclusion probabilities estimated {“q('vjf,)}?zl
compared to the simulated (red points).
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Digression: Some comparative statics on the priors

How posterior estimates are affected by the choice of (A¢, B¢)?

< Scenario C = Ag/Bg = EJQ ~ |G(A§ = 2,B£ = 5)
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Scenario C: A¢/Be — c1, c1 € R*. (a) Depicts the variational correlation matrix for
the process {w;;}}_, obtained from g (b) Plots the trajectory of {‘M‘Z(th)}?=1'
(c) Shows the effect on the posterior inclusion probabilities estimated {Mq(vjt)}?:l
compared to the simulated (red points).
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A re-cap on Variational Bayes (VB) inference

Minimize the Kullback-Leibler (KL) divergence between a variational
density ¢(9) and the true posterior density p(d]y).
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A re-cap on Variational Bayes (VB) inference

Minimize the Kullback-Leibler (KL) divergence between a variational
density ¢(9) and the true posterior density p(d]y).

This corresponds to find ¢* () such that:
*(9) = arg max lo Q) ,
¢ (9) g max, gp(yiq)

with (see Ormerod & Wand 2010),

p(y;q) = /Q('ﬁ) log {pg;;;)} dd,

the variational, or “effective”, lower bound (ELBO).

— N.B., both ¢(9) and p(y,®) are known.
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A re-cap on Variational Bayes (VB) inference (cont’d)

The choice of Q leads to different approaches.
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A re-cap on Variational Bayes (VB) inference (cont’d)

The choice of Q leads to different approaches.

Mean—field variational Bayes (non-parametric):

Q= {q¥ Hq ), for a partition (91,...,9:)}-

< e.g., in a typical linear regression ¢ (3,02) = q(8) q (¢?).

< Closed-form updates based on coordinate ascent algorithm.
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A re-cap on Variational Bayes (VB) inference (cont’d)

The choice of Q leads to different approaches.

Mean—field variational Bayes (non-parametric):

Q= {q¥ Hq ), for a partition (91,...,9:)}-

< e.g., in a typical linear regression ¢ (3,02) = q(8) q (¢?).

< Closed-form updates based on coordinate ascent algorithm.

Parametric variational Bayes:
Q= {4(9) : (| Aq(9)) = [(F; Ag())},
< eg., f(-) Gaussian s.t., Ay) = (Bg(9)s Zq(9))-
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Semi-parametric variational Bayes

We propose an hybrid approach which merge parametric and
non-parametric VB to estimate 9.

Non-parametric = mean—field factorization of ¢(¥):

n

q(9) = ) [T a® m)a(€) [Ta (i) a (z0)-

j=1 t=1
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Semi-parametric variational Bayes

We propose an hybrid approach which merge parametric and
non-parametric VB to estimate 9.

Non-parametric = mean—field factorization of ¢(¥):

n

q(9) = H n)a(€) [T a (o) a(z0).

t=1
Parametric = the red-q belong to a parametric family of distributions.

< Multivariate Gaussian for ¢(h) (recall the GMRF representation).

— Polya-Gamma representation 7;¢|wjs s.t., p(vjelw;e) = q (vj¢) g (25¢)
where p(z;;) ~ PG(1,0).
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Variational density of 3 = ~b

Proposition (see paper)

Define 3; = Tjb;, where b; = (bjo,bj1,...,bjn) and T; =
diag(1,v;1,...,%jn). The optimal variational density of B, is given by
a mixture of multivariate Gaussian distributions:

=> w, Nop1(Dsttyp, ) Di/QEq(b_j)Di/Z)a (1)
seS

where S a sequence of {0,1} of length n with cardinality |S| = 2", the

diagonal matrix D, = diag(1, s1,. .., S,), and mixing weights:
1—s¢
H“qm) Hatos)' (2)
where s = (s1,...,8,...,5,) € S. Moreover, the mean Hqp,) and

variance X5,y can be computed analytically... (see paper)

v
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Properties of the variational updates

Proposition (see paper)

Assume for variable j at iteration ¢ of the algorithm:

— maxt{/z((j()v )} =ex 1.

- EEI()UJ ) Eé(w ; is a non-negative matrix.
It holds that:

(i+1) _ (i+1) (i+1) 1(i+1)

L. piy(s,.) = expit {“ (o) ~ 3Ha(1/02)TstHg(1/n2) Gos +O(€)}'

(z+1)_
2 WD, = Ty s+ 00

3. ,uf;(zlt)) < uf;()w ). decreases after each iteration,

where expit = logit ™!, ¢ = Q71 and sy = [Eqlex

22



Pro

perties of the variational updates

Dimension reduction

Time
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S
A
Iterations

Variational update over iterations (x-axis) until convergence of the vector of poste-
rior inclusion probabilities (/J,q(,yjl), e ’/J"I('an)) (left panel) and ([J,q(wjl), e ’l”q(wjn))
(right panel), for a parameter j which is always zero Vt. The value of the update is
given by the blue intensity. The dashed line identifies the iteration at which convergence
is reached for e = 0.01.
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Efficient variational Bayes inference scheme

Algorithm 1: Efficient variational Bayes for dynamic sparse regressions.

q(9), Ao, Ay, By, Ay, By, A¢, Be while (Ay > Ay) do

end

forj=1,...,pdo
Update ¢(b;) as in 2.1; and g(7;) as in A.8;
Update g(w;) as in 2.3 and ¢(¢;) as in A.9;
fort=1,...,n do
Update ¢(z;¢) as in A.7;
Update ¢(7;¢) as in 2.2 (non-smooth) or 2.6 (smooth);
end
end
Update ¢(o) as in A.1 (heteroskedastic) or A.2 (homoskedastic);
Update g(v?) as in A.10;
if assumption in the previous Proposition holds then
forj=1,...,pdo
if max;{sy(,;,)} < € then
| Drop the j-th variable
end
end
end

Compute Ay = ()t — g(9)(iter=1)

24



Simulation study



Comparison with MCMC

Simulation setting:

(SN

Generate 3 processes {81y, Bat, B3t 1129 such that By, # 0, Vt,
Bor = 0,Vt, and f3; shows dynamic sparsity.

Generate N = 100 replicates from
Yr = T1tB1t + T2t Bor + 3:83¢ + €4, with £, ~ N(0,0.25).

Estimate the model with both VB and MCMC.
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Comparison with MCMC

Simulation setting:

< Generate 3 processes {14, B2t, B3¢ 129 such that Sy # 0, Vt,
Bor = 0,Vt, and f3; shows dynamic sparsity.

— Generate N = 100 replicates from
Yr = T1tB1t + T2t Bor + 3:83¢ + €4, with £, ~ N(0,0.25).

« Estimate the model with both VB and MCMC.

The accuracy of the approximation is quantified as in Wand et al. (2011):

ace(p) = {1-05 [ la(d) - oyl a} %,

where ¢(3) is the variational approximation and p(3|y) is the posterior
from an equivalent MCMC with a large number of draws.
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Comparison with MCMC
Time-varying, £1; # 0,Vt
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Comparison with MCMC

Constant at zero, i.e., f2; = 0,Vt
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Comparison with MCMC

Dynamic sparsity

Accuracy for 3
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Comparison with Bayesian variable selection methods

Simulation setting

N =100 replicates from the following data generating process:
yr =x,8, + &1, & ~N(0,0.25), t=1,...,200,
The dimension of the parameter 3, is equal to p = 50, 100, 200.

— [1¢ is always included, i.e. v = 1, V¢;
—  P2.7+ dynamic sparsity, i.e. 2.7, vary over time;
—  [Bs.p.e is always excluded, i.e. yg.p¢ = 0, VL.
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Comparison with Bayesian variable selection methods

Simulation setting

N =100 replicates from the following data generating process:
yr =x,8, + &1, & ~N(0,0.25), t=1,...,200,
The dimension of the parameter 3, is equal to p = 50, 100, 200.

— (1t is always included, i.e. v, =1, Vt;
—  P2.7+ dynamic sparsity, i.e. 2.7, vary over time;
—  [Bs.p.e is always excluded, i.e. yg.p¢ = 0, VL.

We consider different versions of our estimation algorithm:

— BG = basic model, with no smoothing on P(~;; = 1);
— BGH = as BG, but homoschedastic assumption;

— BGS = model with smoothing on P(v;; = 1);

— BG with fixed latent process variances 532-.

29



Comparison across methods

Benchmarks and metrics

Benchmark methods:

< Static models with rolling windows estimate: normal-gamma (NG),

horseshoe (HS) and spike-and-slab methods (SSVS, EMVS);

— Dynamic spike-and-slab (DSS) of Rotkova & McAlinn (2021), for
© ={0.1,0.5,0.9};

< VB Dynamic variable selection (DVS) of Koop & Korobilis (2020);
Performance metrics:

< Signal/variable identification/selection (F1l-score);

— Computational efficiency (running time in seconds).
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Simulation study

Scenario 1
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Simulation study

Scenario 2 = single switch from §;; = 0 to 5 # 0
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F1: dynamic sparsity one switch
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Simulation study

Scenario 1
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Simulation study

Scenario 3 — two switches from 8, = 0 to ;¢ # 0

p =50

F1: dynamic sparsity two switches
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Simulation study

Scenario 3 — two switches from 8, = 0 to ;¢ # 0
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Simulation study

Scenario 3 — two switches from 8, = 0 to ;¢ # 0
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Simulation study

Scenario 4 — one short-lived switch from 8;; = 0 to 5 # 0

p =50

F1: low signal
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Simulation study

Scenario 4 — one short-lived switch from 8;; = 0 to 5 # 0
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Simulation study

Results | Running time (secs)
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Inflation forecasting



Forecasting inflation based on macroeconomic variables

Empirical setting

Building upon Koop & Korobilis (2020), Rotkova & McAlinn (2021)

— Target = h =1,2,4,8 quarter-ahead inflation. Four measures of
inflation: total CPI (CPIAUCSL), core CPI (CPILFESL), GDP
deflator (GDPCTPI), PCE deflator (PCECTPI).

< Predictors = 229 macroeconomic variables from FRED-QD (see
McCracken & Ng 2020 + 2 lags of the response (quarterly change).

< Sample period = Quarterly data 1967Q3-2022Q2

— Forecasting benchmarks = Unobserved component model (see Stock
& Watson 2007) and TVP AR(1) (see Koop & Korobilis 2020).

— Recursive forecasts = 10 years “burn-in", then recursive forecasts
based on an expanding window.
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Forecasting inflation based on macroeconomic variables

In-sample analysis: Total CPI
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Forecasting inflation based on macroeconomic variables

In-sample analysis: PCE deflator

Hq(y)
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Forecasting inflation based on macroeconomic variables

In-sample analysis: GDP deflator

Dynamics of the selected regression coefficients v
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Forecasting inflation based on macroeconomic variables
In-sample analysis: Total CPI and PCE deflator

Signal >-%_, |11q (Bje) | vs G
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45



Forecasting inflation based on macroeconomic variables

Relative mean Squared Error (benchmark unobserved component model).

T 2 T 2
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Forecasting inflation based on

Diebold-Mariano tests

(q) CPIAUCSL  (r) CPILFESL

"
(s) GDPCTPI (t):;CECTPI
Horizon h =1

macroeconomic variables
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Forecasting inflation based on macroeconomic variables
Relative log predictive score (benchmark TV-AR(2)).

7= S, (log(Si,¢) — log(Sbencn.t))
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Conclusion & what’s next

This paper:

— Dynamic variable selection in large-scale time-varying predictive
regressions.

— Fast and scalable semi-parametric variational Bayes algorithm.

— Competitive compared to existing variable selection methods and
MCMC.

Future research:

— Extension to Generalised Linear Models.
< Dynamic group variable selection.

< Change the dependence:

— irregular time points, spatial data, data over networks.
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