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Abstract
We model UK price and wage inflation, productivity and unemployment over a century and a

half of data, selecting dynamics, relevant variables, non-linearities and location and trend shifts us-
ing indicator saturation estimation. The four congruent econometric equations highlight complex
interacting empirical relations. The production function reveals a major role for energy inputs ad-
ditional to capital and labour, and although the price inflation equation shows a small direct impact
of energy prices, the substantial rise in oil and gas prices seen by mid-2022 contribute half of the
increase in price inflation. We find empirical evidence for non-linear adjustments of real wages to
inflation: a wage-price spiral kicks in when inflation exceeds about 6–8% p.a. We also find an addi-
tional non-linear reaction to unemployment, consistent with involuntary unemployment. A reduction
in energy availability simultaneously reduces output and exacerbates inflation.

JEL classifications: C51, C22.
Keywords: Energy; Inflation; Location Shifts; Indicator Saturation Estimation; Equilibrium Correction.

1 Introduction

The recent and relatively sudden increases in inflation rates in many countries, especially in energy and
food, have posed serious financial problems for lower-income families with high expenditure shares on
those items. The price increases in energy (oil and natural gas) and food have been large, stimulated by a
mix of recovery from COVID-19, supply chain issues and the Russian invasion of Ukraine, exacerbated
by Brexit in the case of the United Kingdom. At their heights since the start of 2022, natural gas prices
have more than tripled, and crude oil prices more than doubled, as did those of corn and wheat.

High rates of inflation are not new to the UK, although their low rates for the last 30 years may have
lulled memories. A major advantage of long-run consistent time series is that they include many wars, oil
(and other) crises and unanticipated major events like pandemics, so can provide evidence on the role of
energy in inflation and how the present situation may pan out. There are growing risks that inflation will
spike further in 2023 and beyond with continued conflict in Ukraine and potential further reductions in
Russian gas supplies. Expectations of higher energy prices have led some forecasters to predict inflation
rates as high as 18% over the next year. Thus, it is of crucial importance to understand how the cost of
energy feeds through into inflation and the broader UK economy. The main drawback of our data being
annual is that the current situation was not foreseen in 2021 and so could not have been forecast by our
models. We circumvent that last problem by calculating projections of inflation based on our empirical
models but using recent data observations.

*The views expressed here should not be attributed to the Department of the Treasury or the U.S. Government. Finan-
cial support from the Robertson Foundation (award 9907422) and Nuffield College is gratefully acknowledged. email: jen-
nifer.castle@magd.ox.ac.uk, david.hendry@nuffield.ox.ac.uk and Andrew.Martinez@treasury.gov
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Figure 1: (a) Logs of UK wages and prices, (b) their rates of inflation, 1860–2021, (c) real wages and
productivity in logs; (d) GDP divided by population.

Figure 1 reports the time series over 1860–2021 for UK nominal wages (W ) and prices (P ) and
their rates of inflation (calculated as ∆ log(X) = ∆x for a level X). There have been huge increases in
nominal annual wages and prices (700 fold and 100 fold respectively since 1860, compared to produc-
tivity rising 7-fold overall) with annual price inflation rates reaching more than 20% on three occasions.
Real wages (w − p) have risen at varying rates, closely tracking productivity (measured by GDP per
worker per year, y − l) and the two clearly cointegrate, yielding the basis for an economic theory model
of real wages. Note the flatlining of both real wages and productivity from 2008 onwards, an issue we
return to in §3. However, over this century, GDP divided by population (i.e., real income per capita) has
risen by 17% (employment growth has exceeded population growth) so UK policies to successfully limit
greenhouse gas emissions have not limited economic growth (see Castle and Hendry, 2022).

Figure 2(a) shows that total UK energy use (Et) rose almost 5-fold from 1860 to 1975, but has not
trended since. The mix of sources has altered substantially from 100% coal in 1860 remaining dominant
till the 1950s, but essentially none by the end of the period, now replaced by roughly equal amounts
of oil, natural gas (both declining) and non-fossil (rising rapidly) all measured in millions of tons of oil
equivalent (Mtoe). Energy per unit of capital (e−k) shown in Panel (b) has fallen greatly from efficiency
improvements, relatively slowly till the mid-1950s then more rapidly since at about 2% p.a. The impacts
on nominal oil prices (Po) of the 1970s oil crises, 2010 speculation and COVID-19 are clearly visible in
Panels (c) and (d). In addition, UK natural gas prices have risen more than 200% since 2019 and have
increased even faster during 2022. The resulting large rises in UK electricity prices despite extensive
renewable supply are partly because wholesale electricity auctions reflect marginal prices, but also the
UK mothballed its last gas storage facility in 2017.

One of the most obvious data features is the non-constancy of change, so even log differences are
non-stationary from distributional shifts as seen in Figure 3. Thus, the modelling approach undertaken
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Figure 2: (a) UK total energy use, Et, calculated as the sum of coal, oil, natural gas, nuclear and
wind+solar+hydroelectric all in Mtoe; (b) log energy per unit capital, e− k, with four sub-period trends;
(c) logs of oil prices in $; and (d) their rates of change, 1860–2021 (so 1.0 = 100%).
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Figure 3: Distributional shifts in UK price inflation by 40-year subsamples.

must be able to handle all forms of change, outlined in Appendix §8 (also see Castle and Hendry, 2019).
The next four sections build empirical econometric models of real wages in §2, highlighting the relevance
of a wage-price spiral and a non-linear unemployment effect; unemployment in §3 where a profits proxy
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explains most of the variation in unemployment; productivity in §4 where the crucial role for energy is
shown; and price inflation in §5 where many domestic and global factors are found to drive price inflation.
Using the models developed, §6 combines the price and wage inflation models to make projections of
price inflation based on energy price rises seen during 2022. Section 7 concludes and Appendix §8
sketches our econometric tools for modelling non-stationary time series. A supplementary data file
records details of the data series used along with their sources.

2 An empirical model of UK real wages

Real wage models tend to fall into two categories, both of which rely on the underlying theory that real
wages are determined by the marginal product of labour, but the first sees inflation expectations accorded
a key role in feed-forward mechanisms of the New Keynesian Phillips Curve (NKPC), see, e.g. Galı́
and Gertler (1999) and Galı́, Gertler, and Lopez-Salido (2001), and the second focuses on feed-back
mechanisms through dynamic models as in Castle and Hendry (2009).
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Figure 4: (a) Changes in real wages; (b) wage share; (c) unemployment rate; and (d) changes in the
unemployment rate, 1860–2021.

Figure 4(a) records real wages for the UK since 1860. Panel (b) plots the cointegrating relation
between real wages and output per worker, which proxies the marginal revenue product of labour with a
cointegrating weight of 1. This is also the labour share in national income, and while it is not integrated
given the evidence of cointegration, it is clearly not stationary with location shifts, notably at the end of
WorldWar II (WWII) and at the beginning of the Thatcher era. Panel (c) plots the unemployment rate,
which in a traditional Phillips curve relationship is assumed to be a driver of real wage growth. However,
the data is persistent and non-stationary with shifting means attributable to exogenous shocks such as
wars and policy, but it is not integrated. The annual change in the unemployment rate, recorded in Panel
(d), also shows a changing variance so even the difference is non-stationary.
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Eyeballing the data on changes in real wages in Figure 4(a) it is hard to discern changes in growth
rates, but Step Indicator Saturation (SIS; see Appendix §8) can be applied (here at 0.1%) to check on
location shifts unconditionally, recorded in the solid black line in Figure 5(a). This reveals a doubling
of the growth rate of real wages post WWII from 0.8% to 1.7%. Applying SIS to the growth rate in
productivity in Panel (c) highlights the upwards shift from 1.2% to 1.7%, but at a different time and by a
different magnitude to the shift in real wages. As the location shifts do not co-break and the large outliers
do not align it suggests a much more complex empirical model of real wages. Panel (b) records many
step shifts in price inflation, and Panel (d) shows those in unemployment: the location shifts in Ur,t and
∆pt also do not match. In the general model of real wages below, we include both the level and the
change in the unemployment rate. The change allows for possible dynamic labour supply effects, i.e. if
unemployment is growing the pool of potential labour supply is increasing, lowering wages, and we find
the level of inflation enters non-linearly. Price inflation is included as a catch-up mechanism if wages
have been eroded due to less than complete adjustment to past inflation, playing an important non-linear
role in the form of a wage-price spiral.
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Figure 5: Step indicator saturation (SIS) and regime shifts: selecting at 0.1% (a) change in real wages;
(b) price inflation; (c) productivity; (d) unemployment rate.

2.1 Modelling non-linearities in real wage determination

We begin by specifying a general unrestricted model of the change in real wages, ∆(w − p)t, to in-
clude an intercept, two lags of the dependent variable ∆(w − p)t−i and the labour share of income,
(w − p− y + l)t−i for i = 1, 2, as well as the contemporaneous values and two lags of labour pro-
ductivity, ∆(y − l)t−j , the unemployment rate, Ur,t−j , and price inflation, ∆pt−j , for j = 0, 1, 2. We
include polynomials of price inflation and the unemployment rate to capture non-linearities. We ap-
ply Impulse Indicator Saturation (IIS; see Appendix §8) and SIS to detect outliers and location shifts
retaining regressors and selecting indicators at 0.1%; then selecting regressors at 1%.
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Let xt be a transition variable with standard deviation σx in the logistic transition function:

F (zt) = (1 + exp {−zt})−1 ; zt = γ

(
xt − c

σx

)
, (1)

where γ determines the rapidity of transition, and c determines the transition point. The function in (1)
can be approximated by the following expansion:

F (zt) ≃
(
1

2
+

zt
4
− z3t

48

)
. (2)

To approximate logistic-type functional forms, we therefore include polynomials of xt = ∆pt in selec-
tion, retaining significant terms. Building on the findings in Castle and Hendry (2014), let:

ft∆pt =
−∆pt

1 + 1000(∆pt)2
, (3)

then (3) is close to the logistic smooth transition function in squared annualized inflation as a percentage
100∆pt, scaling for the same mean and range as ft∆pt:

F (zt) = 2
(
1 + exp

(
−γ(100∆pt)

2
))−1 − 2. (4)

Applying a parsimonious encompassing test for higher-order polynomials added to (3) against (4) (de-
meaned as correlations can be artificially high due to non-zero means, see Castle and Hendry, 2011)
reveals (3) is preferred.
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Figure 6: (a) Wage-price spirals and (b) involuntary unemployment

The non-linear mapping (3) is V-shaped as shown in Figure 6(a). There is little reaction of real
wages to inflation when it is low, but workers become more attentive as price inflation rises and act to
prevent further erosion of their real wages. This is similar to the model of inattentive producers in Reis
(2006). The points are calculated from observed data using estimated coefficients and suggest that the
non-linearity induces a wage-price spiral if inflation exceeds 6%− 8% p.a. This has implications for the
UK in 2022, when CPI inflation is currently running above 8.2% and is projected to exceed 10%.

A second non-linear term, (Ur,t − 0.05)2, is also found to be significant, as discussed in Castle and
Hendry (2014). As the unemployment rate is intrinsically positive, but enters the model with a negative
coefficient, the combined term is positive at low rates, with an increasingly negative impact until the
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unemployment rate exceeds approximately 8%, but then increases: see Figure 6(b). Such an effect could
initially reflect a loss of worker’s bargaining power, but then represent movements along the marginal
product curve, raising real wages of those still employed both from more capital per worker and the
unemployed being the less productive workers. Importantly, the high real wages are not causing high
unemployment, but result from the involuntary unemployment.

The final selected model estimated over the period 1862–2015 is reported in equation (5), where
IWWII = (11942 + 11943 − 11944 − 11945) in which 1xxxx is an indicator function taking the value 1 for
that observation and 0 otherwise, and Sxxxx is a step indicator taking the value 1 till xxxx and 0 after. µ̂
is the sample mean of (w − p− y + l).1 Six years of data are retained for forecasting from 2016–2021,
which includes the COVID-19 pandemic shock.

∆ ̂(w − p)t = 0.363
(0.044)

∆(y − l)t + 0.135
(0.046)

∆(y − l)t−1 − 0.134
(0.030)

∆2pt

− 0.189
(0.034)

(Ur,t − 0.05) + 3.09
(0.68)

(Ur,t − 0.05)2 − 0.233
(0.054)

∆2Ur,t

+ 0.74
(0.12)

(ft∆pt) − 0.136
(0.012)

S1939 + 0.182
(0.016)

S1940 − 0.070
(0.012)

S1941

− 0.042
(0.011)

I1916 − 0.045
(0.011)

I1977 + 0.029
(0.006)

IWWII

− 0.18
(0.030)

(w − p− y + l − µ̂)t−2 + 0.021
(0.003)

S2012

σ̂ = 1.09% R2 = 0.79 Far(2, 137) = 0.06 Farch(1, 152) = 1.21
χ2
nd(2) = 0.62 FHet(19, 130) = 2.36∗∗ Freset(2, 137) = 3.48∗

(5)

The model is reasonably well-specified although fails the test for heteroskedasticity at 1%. Figure 7
records the graphical statistics for the model. The forecast Chow test is FChow(6, 139) = 0.76 and the
t-test for zero forecast innovation mean is t(5) = 1.49. Both tests show the model performs well over the
forecast horizon. This is a truly ex ante forecast exercise as the model was developed prior to the forecast
period, and the data has since been updated so allows a test of the model over the period 2016–2021,
albeit conditioning on known contemporaneous regressors. Figure 8 computes the 1-step ahead forecasts
both in differences and then cumulating to levels. Both show remarkable constancy and pick up the fall
in real wages in 2020 due to the pandemic. The results show that stable models can be developed despite
highly non-constant data.

2.2 Testing super exogeneity

Indicator saturation estimators (ISEs) can be used to test for the exogeneity of the conditioning variables
as in Hendry and Santos (2010). Under the null hypothesis of super exogeneity, the parameters in the
conditional model (5) are invariant to shifts in the marginal models of the included regressors, so any
indicators or step shifts that are found in the marginal models should not enter the conditional model.
Under the null hypothesis, the parameters in the model of ∆(w − p)t are invariant to shifts in models of
other variables. To test this hypothesis we use a VAR(2) in (y − l), ∆p and Ur, retaining all regressors
and selecting outliers and shifts using IIS+SIS at α = 0.001. Saturation found 10 impulse and 7 step
indicators, noting that at such tight significant levels the probability of retaining an indicator or step that
was not relevant is negligible. The retained indicators for the three marginal models were then included

1Lower case denotes logs, ∆2 = (xt − xt−1) − (xt−1 − xt−2), and ∆2 = (xt − xt−2). Coefficient standard errors are
shown in parentheses, σ̂ is the residual standard deviation, Far tests for residual autocorrelation (see Godfrey, 1978), Farch tests
for autoregressive conditional heteroscedasticity (see Engle, 1982), Fhet tests for residual heteroskedasticity (see White, 1980),
χ2
nd(2) tests for non-Normality (see Doornik and Hansen, 2008), Freset tests non-linearity (see Ramsey, 1969) and Fchow tests

for parameter constancy (see Chow, 1960). One star indicates test significance at 5%, two at 1%.
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Figure 7: Real-wage model (5) graphical statistics including (a) fitted and actual values along with
the indicator adjustment path; (b) residuals and forecast errors; (c) residual density; and (d) residual
autocorrelation function.
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Figure 8: ‘Forecasts’ for real wages in differences and levels.

in (5) and tested for their significance. The resulting super exogeneity test of FSE,IIS+SIS(15, 111) = 1.56
is insignificant. Hence, we can conclude that it is valid to condition on the contemporaneous regressors
in (5) and we can proceed to interpret the empirical results.
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2.3 Interpretation

The short-run impact of changes in productivity on real wages is ≈ 0.5, which is a rather rapid incorpo-
ration of productivity increases into real wage increases but is symmetric, so also reflects a dampening
of real wages due to the productivity slowdown since 2008. There is a strong equilibrium correction of
−0.18 from the labour share of income reflecting a long-run feedback to real unit labour costs of about
20% p.a, or a half life of just under 4 years. The coefficient of ft∆pt is highly significant reflecting
the importance of the non-linearity, but the effect is < 1 so is dampened, possibly avoiding an addi-
tional unit root although just 2SE from unity. The non-linear unemployment effect can be re-written
as −0.5Ur,t(1 − 6.0Ur,t), which is negative until the unemployment rate exceeds ≈ 15%, but is then
positive. This non-linearity was not detected in the initial Castle and Hendry (2009) paper, highlighting
the importance of the model selection method allowing for general non-linearities and hence discovering
its important role in an explanation of real wages.

Figure 7(a), records the fitted and actual values of ∆(w − p)t with indicators affecting real wages,
as IIS and SIS were essential to identifying a stable model of real wage growth. There is a key role for
the step indicators in explaining the higher growth rate of real wages post WWII (1.7% p.a., versus 0.8%
p.a. pre-1945), even though ∆(y − l) is included and displays a similar pattern, suggesting the spike
in ∆(w − p) in 1940 induced a permanent location shift which is not explained by the variables in the
model. One possible explanation could be the increase in female labour force participation after WWII
following a rapid up-skilling of the labour force during the war; see e.g. Bernstein and Martinez (2021).
The step shift in 2012 suggests this increase has been reversed over the last decade; steps are defined as
taking the value 1 prior to the date, so real wage inflation has experienced a level shift down by 2%p.a.
since 2012. None of the economic variables in the model explain this step shift which poses serious
policy questions, but the shift is fundamental for the forecast performance of the model over 2016–2021.

The equation standard error of 1.09% compares to an unconditional standard deviation of 2.3% for
real wage growth over the same period, although the equation standard error also reflects the steps and
impulses. The model is remarkably constant over the period of the ‘Great Recession’ and the ‘flat lining’
of real wages. Given such constancy over a period of structural change, we can derive insights into
possible effects on real wages of the current economic pressures in the UK. Rapidly rising price inflation
is a key area of concern, but low productivity derived from a recession is likely to dampen this positive
effect on real wage growth. The tight labour market driving very low unemployment levels suggests the
second non-linearity is not likely to kick in, and if we think of unit labour costs as being closely related to
energy costs for production this may have a long run dampening effect on real-wage growth via a smaller
labour share of income.

3 An empirical model of UK unemployment

Unemployment plays an key role in determining real wages, both as the change in unemployment and
as a non-linear relationship with real wages, possibly capturing movements along the marginal product
curve. As such, a model of the determinants of unemployment is useful for a well specified marginal
model to test, for example, super exogeneity, as well as an understanding of the system more generally.
Following from Hendry (2001), Castle, Clements, and Hendry (2016) formulated and estimated a model
of unemployment estimated up to 2014, and here we extend the analysis to 2021, testing parameter
constancy over the extended sample from 2018.

The empirical model from Hendry (2001) assumes the unemployment rate, Ur,t, is the outcome of
supply and demand for labour, aggregated across all prospective workers, with labour demand derived
from the demand for goods and services. This implies a highly complex data generating process (DGP)
which is approximated by assuming employment increases if hiring is profitable, and falls if not. As there
is no good annual data over the last century and a half for profits we use a proxy. Changes in revenues
are linked to changes in GDP, ∆yt, reflecting the demand side, and the close link between (w − p)t and
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(y − l)t (seen above) suggests labour costs and revenues are equilibrated. On the supply side, capital
costs depend on real borrowing costs, (RL − ∆p)t, where RL is the nominal long-term interest rate.
Combining, we approximate changes in profits by the difference between the proxies for costs and for
revenues:

Rr,t = (RL −∆p−∆y)t. (6)

Figure 9 records this measure of the profits proxy along with the unemployment rate. While there are
some deviations between the two series they tend to move closely together suggesting a ‘cointegrating’
relation between the unemployment rate and the profits proxy: see Castle, Doornik, and Hendry (2021)
for a monthly model of the unemployment rate including non-linear transformations and ISEs.

Rr ,t  = (RL ,t−∆pt−∆yt) 
Unemployment Ur ,t 
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Figure 9: Profits proxy and the unemployment rate, 1860–2021.

3.1 Modelling unemployment by the profits proxy

Here we formulate a dynamic model of Ur,t by commencing with a model in levels with two lags of
both Ur,t and Rr,t. Non-linear functions are not included in the initial specification as the index test of
non-linearity provides no evidence of non-linear functional form at the 1% significance level (χ2

nl(12) =
22.7∗, see Castle and Hendry, 2010). The model in levels with saturation over 1863–2017 yields:

Ûr,t = 1.26
(0.07)

Ur,t−1 − 0.36
(0.06)

Ur,t−2 + 0.006
(0.002)

+ 0.15
(0.02)

∆Rr,t − 0.08
(0.02)

∆Rr,t−1

+ 0.052
(0.001)

∆11922 + 0.036
(0.008)

11930 − 0.035
(0.008)

11939

σ̂ϵ = 0.83% R∗2 = 0.94 Far(2, 146) = 1.93 χ2
nd(2) = 9.85∗∗ FChow(4, 147) = 0.44

Farch(1, 153) = 0.08 FHet(10, 142) = 1.16 FReset(2, 145) = 2.55
(7)

All the pairs of impulse and step saturation indicators cancelled as differences so were essentially equiv-
alent to including ∆11922, 11930 and 11939. The model’s graphical statistics are recorded in Figure 10.
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Figure 10: Graphical statistics of the dynamic unemployment model in levels (7), including (a) fitted and
actual values; (b) scaled residuals; (c) 1-step ahead forecasts; (d) residual density; (e) residual correlo-
gram; and (f) the implied intercept adjustment from the retained indicators.

We then solve for the long-run ‘cointegrating’ relation and transform the dynamic model to differ-
ences including the lagged long-run relationship. The resulting selected model over 1863–2017 yields:

∆Ûr,t = 0.36
(0.05)

∆Ur,t−1 + 0.15
(0.016)

∆Rr,t − 0.10
(0.022)

EUr,t−1

− 0.052
(0.007)

∆11922 + 0.036
(0.008)

11930 − 0.035
(0.008)

11939

σ̂ϵ = 0.82% R∗2 = 0.67 Far(2, 147) = 1.9 χ2
nd(2) = 9.86∗∗

Farch(1, 153) = 0.08 FHet(8, 144) = 0.90 FReset(2, 147) = 0.85

(8)

where the long-run relation is given by:

EUr = Ur − 0.054− 0.72Rr. (9)

We test the constancy of the model by computing the 1-step ex post forecasts for 2018–2021 which
delivers a Chow test of FChow(4, 149) = 0.45, demonstrating remarkable stability of the simple model
over the COVID-19 pandemic.

Figure 11 records the graphical statistics. Although there is one diagnostic failure, the simple model
can explain a large amount of the variation in the unemployment rate over the past century and a half.

3.2 Interpretation

The underlying economic theory is found to be empirically consistent over a century and a half; when the
real long-term interest rate, RL−∆p, equals ∆y, then Rr = 0, and equilibrium Ur is about 5%, close to
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Figure 11: Graphical statistics of the dynamic unemployment model in differences (8), including (a)
fitted and actual values; (b) scaled residuals; (c) 1-step ahead forecasts; (d) residual density; (e) residual
correlogram; and (f) the implied intercept adjustment from the retained indicators.

the historical average. Since the financial crisis, quantitative easing has lowered RL −∆p, offsetting a
large fall in ∆y, so Rr,t only rose briefly, which goes some way to understanding why Ur rose less than
anticipated over the Great Recession. There is a rise in unemployment during 2008, which nevertheless
was much smaller than expected, given a fall of more than 6% in real GDP. The earlier in-sample period
saw many key changes, including two world wars, unemployment benefits, and vast industrial changes,
yet only 1 differenced and 2 impulse indicators are needed with just one explanatory variable. Castle,
Clements, and Hendry (2016) compared (8) to more-conventional models (e.g.) using ∆y and showed
the latter were far poorer. However, despite the success of the model, ex ante forecasts would require
forecasts of the profits proxy and so we next investigate a system model of unemployment and the profits
proxy.

3.3 System model of unemployment and profits proxy

The two variable system in levels for Ur,t and Rr,t over 1864–2017, with 4 observations held for forecasts
up to 2021, applying IIS and SIS at 0.001 to select outliers and steps, yields:

Ûr,t = 1.39
(0.082)

Ur,t−1 − 0.48
(0.074)

Ur,t−2 − 0.025
(0.023)

Rr,t−1 + 0.0045
(0.002)

+ 0.092
(0.010)

11921 − 0.046
(0.012)

11922 + 0.008
(0.010)

11926 + 0.042
(0.010)

11930

− 0.039
(0.010)

11939 − 0.010
(0.010)

11940 + 0.008
(0.005)

S1914 − 0.008
(0.005)

S1918

χ2
nd(2) = 13∗∗ Far(2, 140) = 1.50 Farch(1, 152) = 0.35 FHet(8, 139) = 1.05

(10)
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R̂r,t = 0.298
(0.069)

Rr,t−1 + 0.722
(0.244)

Ur,t−1 − 0.626
(0.222)

Ur,t−2 − 0.0076
(0.0057)

+ 0.247
(0.030)

11921 + 0.054
(0.035)

11922 + 0.107
(0.030)

11926 + 0.048
(0.030)

11930

− 0.020
(0.030)

11939 − 0.119
(0.030)

11940 + 0.114
(0.017)

S1914 − 0.105
(0.016)

S1918

χ2
nd(2) = 5.6 Far(2, 140) = 1.7506 Farch(1, 152) = 0.027 FHet(8, 139) = 1.06

(11)
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Figure 12: Graphical statistics of the two variable system of Ur and Rr, including (a) fitted and actual
values for Ur; (b) scaled residuals for Ur; (c) 1-step ahead forecasts for Ur; (d) fitted and actual values
for Rr; (e) scaled residuals for Rr; and (f) 1-step ahead forecasts for Rr.

The models are well-specified and satisfy the single-equation diagnostic tests, apart from normality
for the unemployment rate equation, as well as the system statistics reported in Table 1. System residuals
and root mean square forecast errors (RMSFEs) are reported in Table 2 where both the 1-step ahead
and 2-step ahead forecast errors for Ur,t are smaller than the in-sample residuals. The 1-step ahead
forecast errors for Ur,t are very similar to those for the single equation model despite not including the
contemporaneous profits proxy. The forecasts for Rr are poor over 2020 and 2021 due to the Covid-
19 pandemic. Figure 12 records the model fit and residuals along with 1-step ahead forecast errors.
Few indicators and steps are needed other than for the Great Depression and World Wars. The highly
significant step indicators for 1914 and 1918 in (12) are not needed in (7) nor are the impulse indicators
for 1926 and 1940, effectively demonstrating the super exogeneity of Rr,t in (7). Overall, the results
suggest that the relationship between the unemployment rate and the profits proxy has been remarkably
stable over the past century and a half despite many shocks including wars, recessions, technology and
policy changes, but Covid has highlighted the difficulty of forecasting the profits proxy when there is an
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unanticipated large fall in ∆yt from lockdowns. Conversely, the UK job retention scheme (furlough),
mitigated the impact of lockdowns on recorded unemployment (see Castle, Doornik, and Hendry, 2021).

Table 1: System statistics for (10) and (11).
Statistic outcome

FVAR(8, 274) 1.62
FVRESET(8, 274) 0.78

χ2
VND(4) 24.3∗∗

FVHET(24, 397) 1.14
Corr(êUr , êRr) 0.56

Table 2: System residual σ̂s and RMFSEs for 1 and 2-steps ahead forecasts over 2018–2021.
Statistic Ur Rr

σ̂ 0.0098 0.0293
RMFSE1 0.0041 0.0539
RMFSE2 0.0040 0.0437

4 Productivity

Rates of technical progress have varied greatly over time, inducing changing trends in the relationships
between output and capital. The real-wage data showed its close relation to productivity, so we model
the ‘production function’ as relating (y − l) to (k − l) with changing trends and location shifts.2

One part of the recent UK ‘productivity puzzle’ is that real GDP per capita has risen although pro-
ductivity has not. This is due to a large rise in employment relative to population leading to a ratio that
is at its highest recorded in peacetime. This also leads to the very different trends since 1995 in output
per worker and per person highlighted in the box in Figure 1(d). As the proportion of the population
employed rises, many of the jobs left for the new workers are lower productivity, but by raising total
output, incomes rise.

4.1 Including energy in the productivity model

Given the concern about the rise in the prices of oil and gas since 2021, and the possibility of severe
supply cuts, we reconsider the role of energy in determining the UK ‘production function’ developed
in Hendry (2001),(2022). Both studies modelled the relation between output per employee per annum
and the capital labour ratio, and found several trend shifts. Here we augment the dynamic model in
the second paper with a measure of total energy use, Et, calculated as the sum of coal, oil, natural gas,
renewables (wind, solar and hydroelectric) and nuclear all measured in millions of tons of oil equivalent
(Mtoe), shown in Figure 2(a).

Net trends in the relationship between (y−l) and (k−l) depend on the extent and rapidity with which
technical progress is embodied in the capital stock both for labour productivity and energy efficiency, or
is ‘disembodied’ as in organizational improvements. Figure 2(b) shows the dramatic drop in energy rel-
ative to capital, with three sub-period trends for 1860–1920, 1921–1968, and 1969–2017, corresponding
roughly to coal only, coal plus oil, then all fuels. The large swings in the inter-war period are ‘captured’

2Previous models used (k−n) where n is the log of the measured ‘working population’, namely N = L+U . This corrects
for the potential artefact that while Y responds very rapidly to increases in U , K cannot, as can be seen in the 1920s, but proved
problematic in more recent data.
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as transient events by impulse indicators, after which the trend indicators for the first two sub-periods
were essentially the same so were combined with a coefficient of −0.005 compared to −0.023 for the
remainder of the sample. Overall the efficiency of energy use improved by more than 80%.

The means and standard deviations (SDs) of the growth rates measured by ∆(y − l), ∆(k − l)
and ∆(e − k) have changed greatly over time, as Table 3 records for a mid-period split, as have their
correlations, although the mean growth rates and SDs of ∆(y − l) and ∆(k − l) have been similar in
each period.

Date Statistic ∆(y − l) ∆(k − l) ∆(e− k)

Mean 0.9% 0.9% -0.6%
1863− 1945 SD 2.7% 2.6% 8.0%

Correlation 0.06 0.21 -0.44
Mean 1.8% 2.0% -1.9%

1946− 2017 SD 1.7% 1.6% 3.3%
Correlation 0.32 0.34 -0.17

Mean 1.3% 1.4% -1.2%
1863− 2017 SD 2.3% 2.2% 6.3%

Correlation 0.17 0.21 -0.40

Table 3: Correlations are between ∆(y− l) & ∆(k− l), ∆(y− l) & ∆(e−k), and ∆(k− l) & ∆(e−k)

To model the production relation, we formulated a general model over 1863–2021 of yt on lt, kt,
et and their first lagged values, together with the trend shift and outlier indicators from Hendry (2022).
These had been selected using trend-indicator saturation (TIS, which allows for a potential trend shift at
every point in time: see Castle, Doornik, Hendry, and Pretis, 2019). The homogeneity restriction to a
model of (y − l)t on (k − l)t and (e − k)t, their lags and indicators yielded F(3, 140) = 1.95 so that
reduction was imposed. Transforming to an equation of (y − l)t on a constant, t, (k − l)t, (e− k)t and
lags, plus all retained indicators, selecting at 1% resulted in the following model for 1863–2021:

(̂y − l)t = 0.47
(0.043)

(y − l)t−1 + 0.216
(0.026)

(k − l)t + 0.146
(0.019)

(e− k)t + 1.08
(0.27)

+ 0.0089
(0.0015)

t − 0.040
(0.006)

τ1939 + 0.058
(0.008)

τ1941 − 0.022
(0.003)

τ1946 + 0.006
(0.001)

τ2006

− 0.101
(0.016)

τ2010 + 0.034
(0.008)

S1918 − 0.109
(0.015)

11920 − 0.100
(0.017)

12020

σ̂ = 1.46% R2 = 0.9995 Far(2, 144) = 1.96 χ2
nd(2) = 0.96

Farch(1, 157) = 1.68 FHet(19, 137) = 1.05 FReset(2, 144) = 0.08

(12)

τxxxx denotes a segmented trend that commences with a negative value at the beginning of the sample
and increases to zero at date xxxx so trends are not carried forward. Figure 13 records the graphical
statistics of the model. Although the simple correlation between (y− l) and (e− k) is −0.97, the partial
correlation in (12) is +0.53. The 1926 general strike and longer miners’ strike led to a 36% fall in
coal output, and this supply shock produced a 4% fall in GDP, matching the effect expected from the
coefficient of (e− k) in (12). Unlike the very sharp GDP falls of around 10% in 1919 and 1920 induced
by massive reductions in the government deficit from about 40% of GDP to near zero, no indicator was
needed for the 1926 drop, so the change in energy supply captured the fall. To test the invariance of the
coefficient of (e − k)t in (12), we modelled it as a function of (g − l)t−1, (k − l)t−1 and (e − k)t−1

(retained) selecting SIS+TIS at α = 0.01%, then applied IIS at 0.1% and finally selected over all retained
variables at 1%. The indicators retained were S1920, S1922, τ1965, 11922, 11926, 11927, 11981, and testing
their significance in (12) yielded F(7, 82) = 1.4, so super exogeneity is not rejected.
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Figure 13: Graphical model statistics for (12) including (a) model fit; (b) residuals; (c) residual density;
(d) residual autocorrelation function; (e) implied indicator adjustment; and (f) the long-run cointegrating
relation after solving the dynamic model for the long-run solution.

The derived long-run coefficient of l was 0.59, similar to the aggregate labour share of about 2/3:

(̃y − l)LR = 0.41
(0.044)

(k − l) + 0.28
(0.037)

(e− k) + 0.017
(0.003)

t − 0.076
(0.011)

τ1939 + 0.108
(0.014)

τ1941

− 0.043
(0.005)

τ1946 + 0.023
(0.005)

τ2006 − 0.022
(0.007)

τ2010 + 0.064
(0.014)

S1918 − 0.206
(0.035)

11920

− 0.19
(0.037)

12020 + 2.03
(0.46)

(13)
with t∗∗ur = −12.3 strongly rejecting a unit root. Figure 13(f) records the equilibrium-correction values

q(y−l),t = (y − l)− (̃y − l)LR.
Expressed as a production function, where At collects all the deterministic functions:

ỸLR,t = AtL
0.59
t K0.13

t E0.28
t (14)

The role of energy seems overly large, although increases in energy use were as crucial to the industrial
revolution as machinery to utilise it, and (k−l) and (e−k) are highly negatively correlated. Transforming
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to an equilibrium-correction form yields:

∆̂(y − l)t = 0.012
(0.0015)

+ 0.26
(0.06)

∆(k − l)t + 0.15
(0.02)

∆(e− k)t − 0.47
(0.056)

qt−1

− 0.053
(0.016)

11919 − 0.11
(0.015)

11920 − 0.05
(0.015)

11940 − 0.11
(0.015)

12020

σ̂ = 1.50% R2 = 0.65 Far(2, 149) = 3.54∗ χ2
nd(2) = 0.22

Farch(1, 157) = 1.65 FHet(6, 148) = 1.47 FReset(2, 149) = 0.08

(15)

The fitted and actual values and residual graphs of the equilibrium-correction productivity model (15)
are shown in Figure 14. The model is well-specified, passing diagnostic tests at the 1% significance
level. The slowdown in productivity is mostly driven by the trend shift in 2006 in levels, but there is
no corresponding step shift in the differenced model. The intercept adjustment recorded in Figure 14(e)
shows very few adjustments are needed for the model of the change in output per worker.
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Figure 14: (a) actual and fitted values of ∆(y − l); (b) scaled residuals; (c) residual density; (d) residual
correlogram; and (e) intercept adjustment.

5 Price inflation

Hendry (2001),(2015) derived a model for UK inflation that included excess demand for output, money,
and national debt; unemployment, exchange rate, unit labour costs, interest rates, wages, world and
energy prices. The selected model found significant roles for excess demand for goods and services,
world and energy prices, M4 growth and short and long-term interest rates, and an equilibrium correction
markup of prices over unit labour costs. There was little inertia via lagged inflation, but a small direct
impact of wages via unit labour costs. Neither unemployment nor inflation expectations were found to
be relevant but many impulse and step indicators were needed, explaining events outside of the economic
variables included.
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Here we build a model of price inflation as measured by the implicit GDP deflator updated to 2021,
although we commence the sample in 1965 given the many structural changes and non-constancies in
the earlier period. The model selection methodology described in the Appendix §8 is applied and the
resulting model for 1965–2021 is:3

∆̂pt = 0.29
(0.040)

∆pt−1 + 0.12
(0.032)

∆mt−1 + 0.17
(0.095)

∆Rs,t + 0.06
(0.023)

∆pw,t

− 0.45
(0.091)

(Rs −Rl − µR)t−1 + 0.007
(0.005)

∆po,t−1 + 0.45
(0.051)

∆ulct

+ 0.03
(0.004)

Iagg − 0.005
(0.002)

ChinaEffect

σ̂ = 0.90% R2 = 0.98 Far(2, 46) = 0.09 χ2
nd(2) = 0.25

Farch(1, 55) = 0.70 FHet(17, 39) = 1.08 FReset(2, 46) = 0.62

(16)

The supplementary data file details the data and sources but for convenience we summarise the
relevant regressors here. ∆m is the growth rate of broad money, Rs the short-term interest rate and
Rs,t − Rl,t − µR is the difference between the short and long interest rates corrected for a zero mean
over the full sample such that µR = Rs −Rl. ∆po is the growth rate of a commodity price index linked
to oil post 1997, measured in £, ∆ulc is a measure of the change in unit labour costs, and ∆pw,t is a
measure of world inflation based on a trade-weighted world price index measured in £. Finally, Iagg is
an aggregated index of retained indicator variables based on Hendry (2001), weighting small, medium
and large outliers into an index mostly covering wars and the Great Depression, with the final non-zero
value of the data series in 1980, and ChinaEffect is a step shift taking the value 0 to 1993 and 1 from
1994 onwards to represent the downward pressure from Chinese price competition.

Figure 15 records the model fit in panel (a), scaled residuals in panel (b), residual density in panel
(c) and residual autocorrelation function in panel (d). The model passes all diagnostics and is well-
specified with an equation standard error of 0.9% despite inflation ranging from upwards of 24% to 0%.
There is some inflation inertia, along with effects from broad money growth and interest rates, both
the change in the short-run and the short-long spread. Energy prices, which are proxied by commodity
prices, do not play a significant role, but we note the possibility of testing for non-constant parameters
once we have data for 2022 using multiplicative step indicator saturation (MSIS, see Castle, Doornik,
and Hendry, 2022). There is a sizable coefficient on unit labour costs which, linking back to §2.1, shows
the important role for a wage price spiral effect in the price inflation equation. We do not find a role for
excess demand for goods and services or the mark-up of prices over unit labour costs unlike the earlier
studies. Given the congruent specification we next investigate the implications for current inflation under
alternative scenarios for energy prices in 2022.

6 Wage-price spirals and projections for 2022 inflation

Having developed models for price and wage inflation, we can undertake scenario analysis to investigate
what the likely impact of the energy price rises seen in 2022 will be on UK price inflation. A full system
model of wages, prices, productivity and unemployment is left for future research, but combining the
single equation models is informative.

The change in unit labour costs is ∆ulct = (∆wt +∆lt −∆yt) and (y + p − w − l) = π denotes
the markup of nominal output over the wage bill, so letting D∆pt summarise the other drivers in (16) and

3Similar results are obtained if we estimate using instrumental variables for ∆ulct as it implicitly uses ∆wt. The in-
struments included the lagged wage share, lagged change in unit labour costs, lagged output gap, the change in the working
population and the change in the unemployment rate.
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Figure 15: Graphical statistics for the price inflation model in (16).

D∆wt summarise the other drivers in (5), we can simplify the the estimated equations to:

∆pt = λ∆wt + ρ∆pt−1 − λ∆(y − l)t +D∆pt (17)

∆wt = (1 + γft)∆pt +D∆wt (18)

where ft is defined by equation (4). Solving out for price inflation results in:

∆pt = λ (1 + γft)∆pt + ρ∆pt−1 − λ∆(y − l)t + (D∆pt + λD∆wt)

≈
D∆pt + λD∆wt − λ∆(y − l)t

(1− λ (1 + γft)− ρ)
. (19)

In the limit when workers demand 100% inflation compensation, so ft = 0 given λ = 0.5 and ρ = 0.25
then:

∆pt ≈
1

(0.25)
(D∆pt + λD∆wt − λ∆(y − l)t) . (20)

Substituting back in the other drivers for wage and price inflation, since:

∆(y − l)t = 0.44∆(k − l) + 0.28∆(e− k) + 0.005

this results in:

∆pt ≈ 4 (0.1∆mt − 0.3Rs,t + 0.4Rl,t + 0.01∆pot + 0.06∆pwe,t − 0.5∆ (y − l)t)

+4 (0.25∆ (y − l)t − 0.1Ur,t + 0.1πt−1)

= 0.4∆mt − 1.2Rs,t + 1.6Rl,t + 0.04∆pot + 0.24∆pwe,t + 0.4πt−1

−0.44∆(k − l)t − 0.28∆(e− k)t − 0.4Ur,t. (21)
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Thus, increases in the growth rate of M4, energy prices and world prices, and in the markup and long-
term interest rates all raise inflation, whereas increases in capital and energy, short-tern interest rates, and
unemployment reduce it. Also, a reduction in energy availability of 10% (say) would simultaneously
reduce output by 2.8% and exacerbate inflation to the same extent.

Table 4 shows conditional projections of inflation in 2022 from (21), where ∆po,t in the top 3 rows
uses an equally-weighted average of a 50% increase for oil and 250% increase for natural gas, resulting
in a 150% increase in commodity prices, whereas the ‘bad scenario’ has a 300% increase. Despite a
small and insignificant direct effect of commodity prices on inflation in (16), the impact of the energy
price increase contributes almost half of the projected contribution to price inflation in the first scenario
and 2/3rds in the second. These projections assume constant parameters in 2022, but if there was a
direct location shift which increased the coefficient on commodity prices in the price inflation equation
the impact could be even larger, and would be testable using MSIS as soon as the data for 2022 is
available, see Castle, Doornik, and Hendry (2022). Given the contributions to inflation from the model,
short term interest rates would need to rise to 5% to offset the direct contributions of energy price rises in
the first scenario, and as during the 1970s oil crises, interest rates would need to rise towards 20% in the
second scenario to dampen inflation down to the government set 2% target for inflation, ceteris paribus,
exceeding any levels seen since the 1970s (see Hendry, 2001).

Ur,t πt ∆pw,t ∆pot ∆mt Rs,t Rl,t ∆(k − l)t ∆(e− k)t ̂̇p ṗ

Coefficient -.4 0.4 0.24 0.04 0.4 -1.2 1.6 -0.44 -0.28 - -
≈ % change 1 5 6 150 4 3 2 1 -10 - 11
≈ % impact -.4 2.0 1.4 6 1.6 -3.6 3.2 -.44 2.8 12.6 11

high % change 2 -5 10 300 8 6 4 1 -10 - 11
bad scenario -.8 -2.0 2.4 12 3.2 -7.2 6.4 -.44 2.8 16.4 -

Table 4: Contributions to 2022 Inflation. ̂̇p denotes the projected inflation rate under alternative scenarios
and ṗ denotes the current inflation rate (August 2022).

7 Conclusions

The recent rise in UK price inflation was unanticipated, leading to a flurry of activity rethinking infla-
tion models.4 But high inflation rates are not new and history can shed light on the current inflationary
climate. We use a long-run time-series dataset to model price inflation along with real wages, unem-
ployment and productivity to gain insight into the current implications of inflationary pressures. The
advantage of a long time-series of data is that there is a lot of variation which helps to identify explana-
tory factors. The disadvantage is that history is fraught with outliers, structural breaks, and distributional
shifts (as is the future). The present is not at all like the past. In order to use the historical evidence
we rely on econometric methods that can handle non-stationarities in the form of distributional shifts,
resulting in congruent econometric models despite the vast change that the UK economy has experienced.

The paper highlights the importance of joint modelling of dynamics, location shifts, relevant vari-
ables and non-linearities. The automatic model selection approach implemented in our empirical models
can handle many more variables than observations and this approach led to the detection of non-linearities
which are fundamental in explaining the relationship between wages and prices. There is strong empir-
ical evidence for non-linear adjustments of real wages to inflation where a wage-price spiral essentially
adds a unit root to the wage-price process when inflation exceeds about 8%. Given that inflation was
8.8% in July 2022, this non-linearity is essential to understanding how inflation could potentially take

4The Bank of England Monetary Policy Report in November 2021 included a central projection of inflation to rise to almost
5% in mid-2022, declining back to 2% over the two year horizon, but the widest confidence bands indicating a 90% confidence
interval were at a maximum of 7% in mid-2022. The outturn was 8.8% in July 2022.
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off. We also found an additional non-linearity in unemployment which is consistent with involuntary
unemployment.

Although the models are single equation, we use automatic tests for super-exogeneity to justify the
modelling procedure. An area for future research is to combine the four models into a system complete
with non-linearities and distributional shifts. However, we show that the price and wage equations can
be combined along with the fundamental non-linearities to obtain projections for the contributions to
current inflation. By imposing a 150% increase on energy prices (made up of 50% price rise in oil and
250% in natural gas in equal parts, a conservative estimate at the time of writing) we show that inflation
is projected to rise to 12.6%, very close to the 11% current inflation level. Energy costs along with
unit labour costs are fundamental to explaining past inflation episodes, and hence understanding current
inflationary pressures.
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8 Appendix: Econometric tools for modelling non-stationary time series

Given the manifest evidence of changing changes in all the variables associated with energy and eco-
nomic outputs and their prices, a priori specification of a complete and correct model of the DGP is
infeasible. Instead, to make the economic analysis empirically useful, model selection allowing for any
number, magnitude, type, sign and timing of shifts is needed. Indicator saturation estimators (ISEs) offer
a possible approach, available in software like Autometrics PcGive (see Doornik, 2009, and Doornik and
Hendry, 2021), in EViews and as gets in R (see Pretis, Reade, and Sucarrat, 2018) based on a variant
of machine learning for time series that uses block multi-path expanding and contracting searches. The
main ISEs are impulse (IIS) for detecting outliers: see Hendry, Johansen, and Santos (2008), analyzed
by Johansen and Nielsen (2009); step (SIS) for modelling location shifts (see Castle, Doornik, Hendry,
and Pretis, 2015); trend (TIS) for trend shifts (applied in Walker, Pretis, Powell-Smith, and Goldacre,
2019 to health care management); multiplicative (MIS) for parameter changes (see Castle, Doornik, and
Hendry, 2020); and ‘designed’ (DIS) for modelling repeating shift patterns (e.g., the impacts of volcanic
eruptions on temperatures as in Pretis, Schneider, Smerdon, and Hendry, 2016); combinations of these,
called super-saturation, are proposed in Ericsson and Reisman (2012). Impulse indicators are the first
difference of step indicators which are the first difference of trend indicators, so SIS and TIS can capture
outliers and the latter also steps, and while not parsimonious, that can be adjusted manually. Although
stringent significance levels like α = 0.01% are required to avoid excess numbers of irrelevant indicators
being selected, these only apply to the indicators as all other regressors can be retained at that stage and
only need selecting at more conventional significance levels like 1% later (see Hendry and Johansen,
2015).

The general approach to modelling non-stationary economic times series in §2–§5 commences with
a very general model specification that allows for all possible explanatory variables, unknown functional
forms of non-linearity, general dynamics, distributional shifts and outliers. Such generality necessarily
implies more variables than observations at the outset, but it enables a congruent, well-specified model
which nests the Data Generating Process (DGP) via the Theory of Reduction, see Hendry (1995, ch.9).
Model selection using a tree search algorithm reduces the candidate set of regressors while allowing
for complex correlations, ensuring that congruency is retained at every reduction stage, see Hendry and
Doornik (2014).
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General non-linear functions are used at the initial specification stage if agnostic on the specific func-
tional form of possible non-linearities, and linearity in the parameters is maintained to ensure an efficient
reduction although this is not required as reduction is done via maximum likelihood. Weierstass’s ap-
proximation theorem suggests using polynomials as the general non-linear functional form, and we use
encompassing tests to identify specific functional forms against this general alternative. §2 demonstrates
this approach by testing a general polynomial model against a logistic smooth transition wage-price spiral
to obtain identification of the non-linearity inherent in the model.

Selection with more variables than observations inevitably means that the initial general model spec-
ification cannot be estimated. An iterative approach is needed with expanding as well as contracting
searches to allow for correlations between variables that aren’t jointly included in each block search.
Backtesting ensures that any reduced model encompasses the general model so there is no significant
loss of information by eliminating regressors. Diagnostic checking also ensures the selected models are
well-specified such that the model is a close approximation to the data generating process. Finally, if a
range of models are retained, denoted terminal models, then encompassing tests or information criteria
can be used to select the final preferred model.

Having arrived at a model that is congruent with relevant explanatory variables and any breaks,
outliers and non-linearities have been explicitly modelled, tests of exogeneity on contemporaneous re-
gressors can be undertaken, see Engle and Hendry (1993). As a final stage, forecasts can be computed
by extending the data set or having held back a subset of data to ensure ex ante forecasts. Evaluating
the forecasts does not validate the model as the forecast performance will depend on the out-of-sample
data and need not indicate a poor model even if the forecasts are poor. However, poor forecasts could
highlight ex post parameter non-constancy.

Despite searching over many candidate variables, Hendry and Johansen (2015) show that under the
null of N possible candidate regressors that are all irrelevant, αN will be retained by chance even when
N > T , where α is the significance level used to select the candidate regressors. Furthermore, if a theory
model is retained without selection, if all other variables included in selection are orthogonalised with
respect to the theory variables, then the resulting parameter estimates will be exactly the same as if the
theory model was directly estimated. But as the data from §1 shows, any theory model that doesn’t allow
for change cannot be empirically relevant. Selection enables us to learn about the non-constancy in the
data.

Throughout the modelling process we emphasize the joint nature of all modelling decisions. All
aspects must be selected jointly for a coherent economic model, including all substantively relevant
variables, their dynamics, outliers and location shifts, and non-linearities. Testing for each aspect indi-
vidually and sequentially will result in a well-specified model. For example, location shifts and non-
linearities can be observationally equivalent and yet have very different economic interpretations and
forecast implications, and not removing large outliers or shifts could hide the presence of other relevant
variables or non-linearities.
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