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MOTIVATION

▶ Quantile forecasts are useful to characterize other distributional
features than the central tendency, in particular risk or
uncertainty.

▶ They are becoming more and more popular, examples from
economics and finance: Value-at-Risk (VaR) and Growth-at-Risk
(GaR).

▶ Usually, such forecasts are issued over multiple horizons.
▶ Often, multiple quantiles are of interest, examples: prediction

intervals or all deciles to characterize the full distribution.
▶ Usually, we are interested in evaluating a forecasting approach

over all horizons and quantiles of interest. This calls for
multi-horizon, multi-quantile evaluation.
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LITERATURE

▶ We are interested in multi-horizon, multi-quantile absolute
evaluation of quantile forecasts.

▶ Huge literature on absolute evaluation of quantile forecasts
(single-horizon, single-quantile), e.g.:
Christoffersen (1998); Engle and Manganelli (2004); Gaglianone
et al. (2011); Nolde and Ziegel (2017)

▶ Relative multi-horizon evaluation for mean forecasts, extension
to quantiles straightforward: Quaedvlieg (2021)

▶ Absolute multi-horizon evaluation of mean forecasts: Patton and
Timmermann (2012)

▶ Idea of Paper: Provide (non-conservative and interpretable)
optimality tests for multi-horizon & multi-quantile forecasts
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CONTRIBUTIONS

▶ Tests for autocalibration based on quantile Mincer-Zarnowitz
(MZ) regressions:
▶ Allow for multi-horizon and multi-quantile forecasts
▶ Are based on a finite set of moment (in)equalities
▶ Use bootstrap critical values

▶ Extensions:
▶ Stronger form of calibration via augmented MZ regressions
▶ Multivariate version

▶ Simulations to analyse finite sample performance
▶ Application of the tests in macro and finance
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SET-UP

▶ Vector time series {Zt}T
t=1 containing the target variable yt and

other predictors
▶ Forecaster’s goal: predict the τ -quantile of yt using information

from h periods ago:

qt,h (τ |Ft−h) = F−1
yt|Ft−h

(τ)

with the information set Ft−h = σ({Zs; s ≤ (t − h)})
▶ Denote an h-period-ahead forecast of qt,h (τ |Ft−h) for time t by

ŷτ,t,h

▶ Forecaster issues forecasts for multiple horizons
h ∈ H = {1, . . . ,H} and multiple quantile ranks
τ ∈ T = {τ1, . . . , τK}.
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QUANTILE FORECAST OPTIMALITY

▶ Forecast ŷτ,t,h is optimal w.r.t. the information set Ft−h if:

ŷτ,t,h = qt,h (τ |Ft−h) .

▶ Forecast ŷτ,t,h is autocalibrated if:

ŷτ,t,h = qt,h (τ |σ (ŷτ,t,h)) ,

which is a weaker notion of optimality (Tsyplakov, 2013;
Gneiting and Ranjan, 2013)
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AUTOCALIBRATION TEST

▶ Base test on Mincer-Zarnowitz (MZ) regressions:

yt = α†
h(τk) + β†

h (τk)ŷτk,t,h + εt,h(τk)

▶ Null hypothesis:

HMZ
0 : {αh(τk) = 0} ∩ {βh(τk) = 1} for all h ∈ H and τk ∈ T

▶ Rejecting the null implies systematic errors in the forecasts.
▶ Our test is interpretable:

▶ It shows which quantiles and horizons contribute most strongly to
rejection

▶ MZ regression lines inform us how forecasts could be improved
▶ Extends Gaglianone et al. (2011) to multi-horizon and

multi-quantile setting
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TEST STATISTIC

▶ Use moment equality framework of Andrews and Soares (2010)
▶ We observe an evaluation sample of size P, i.e. a scalar-valued

time series of observations starting at some point in time
R + 1 ∈ Z, {yt}T

t=R+1, , (T = P + R) and a matrix-valued time

series of forecasts,
{
(ŷτ,t,h)τ=τ1,...,τK,h=1,...,H

}T

t=R+1

▶ For each τk and h:
▶ Estimate the coefficients αh(τk) and βh(τk) by quantile regression.
▶ Define empirical moment m̂s either as α̂h(τk) or as (β̂h(τk)− 1)

▶ Test statistic:

ÛMZ =

κ∑
s=1

(√
Pm̂s

)2
,

where P denotes the size of the evaluation sample, κ = 2HK
▶ Asymptotic distribution depends on the variance-covariance

matrix of the various quantile regression coefficients
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BOOTSTRAP CRITICAL VALUES

▶ We use moving block bootstrap critical values (CVs) (Künsch,
1989; Gregory et al., 2018), requires choice of block length l

▶ Resample directly from {yt, ŷτk,t,h}T
t=R+1 for each h and τk to

generate B bootstrap samples

{yb
t , ŷb

τk,t,h}
T
t=R+1, b = 1, ...,B

▶ Obtain B bootstrap test statistics:

Ûb
MZ =

κ∑
s=1

(√
P(m̂b

s − m̂s)
)2

and take critical values as the 1 − α quantile
▶ Remarks:

▶ Establish asymptotic validity of these CVs
▶ Operate under P/R → 0 as P,R → ∞, MC suggests good

performance also under equal split P = R
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AUGMENTED MINCER ZARNOWITZ

▶ Can test a stronger form of optimality relative to a larger
information set It−h ⊂ Ft−h than σ(ŷτk,t,h)

▶ Propose the augmented MZ test using additional regressors Zt−h
from Ft−h:

yt = α†
h(τk) + ŷτk,t,hβ

†
h (τk) + Z′

t−hγ
†
h(τk) + εt,h(τk)

and test the composite null hypothesis for all h ∈ H and τk ∈ T :

HAMZ
0 : {α†

h(τk) = 0} ∩ {β†
h (τk) = 1} ∩ {γ†

h(τk) = 0}

▶ Reject null ⇒ Zt−h contains information which could have
improved forecasts
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MULTIPLE TARGET VARIABLES

▶ Set-up can easily be extended to several target variables
i = 1, ...,G

▶ Examples: multiple macro series of interest, VaR of multiple
firms in the S&P500 etc.

▶ We simply extend the MZ regression to multiple time series:

yi,t+h = αh,i(τk) + ŷi,τk,t,hβh,i(τk) + εi,t,h(τk), i = 1, . . . ,G.

and test the composite null hypothesis:

HMMZ
0 : {αh,i(τk) = 0} ∩ {βh,i(τk) = 1}

for all h ∈ H, τk ∈ T , i = 1, . . . ,G
▶ Previously κ = 2HK moment equalities, now κ = 2GHK
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FINANCE APPLICATION

▶ Backtesting VaR (τ -quantile of return distribution) is a central
task in financial risk management

▶ Typically τ set to be a single level like 1%, 2.5% or 5%
▶ However, no consensus on this, and measures like expected

shortfall (ES) depend on a range of quantiles
▶ In addition, multi-horizon aspect to risk management: often one

day-ahead or cumulative 10-day returns used
▶ Our test is naturally suited to this set-up
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DATA AND SET-UP

▶ Target variable: daily S&P500 returns
▶ Model: GARCH(1,1) of Bollerslev (1986) with GARCH bootstrap

of Pascual et al. (2006) to generate multi-step quantile predictions
▶ Data source: Oxford Man Realised Library
▶ Data span: 3rd Jan 2000 to 27th June 2022
▶ Estimation scheme: recursive window
▶ Sample sizes: T = 5634 daily observations, initial estimation

sample of size R = 3000
▶ Horizons: H = 10, so h = 1, ..., 10
▶ Quantile levels: T = {0.01, 0.025, 0.05}
▶ Bootstrap: block length l = 10, B = 1000 draws
▶ Robustness checks: GJR-GARCH model (Glosten et al., 1993),

without Covid-19 period, different bootstrap block lengths l
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RESULTS
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RESULTS - INDIVIDUAL CONTRIBUTIONS

Useful to look at individual contributions to this statistic from single
quantiles and single horizons

τ = 0.01 τ = 0.025 τ = 0.05 all

h = 1 427.463 81.455 39.217 548.135
h = 2 439.467 195.770 50.126 685.363
h = 3 672.670 266.256 127.524 1066.450
h = 4 591.907 265.840 99.559 957.306
h = 5 549.574 431.091 141.886 1122.551
h = 6 553.680 431.926 114.260 1099.866
h = 7 149.554 291.555 230.722 671.831
h = 8 258.922 298.486 223.656 781.063
h = 9 560.313 405.563 402.132 1368.008
h = 10 497.402 562.498 473.658 1533.558
all 4700.952 3230.439 1902.740 9834.131

Testing Quantile Forecast Optimality 14 / 21



Introduction Optimality and Tests Extensions Empirical Application I Empirical Application II Conclusion

RESULTS - INDIVIDUAL P-VALUES

What to do without our test? P-values from single quantile and
horizon tests:

τ = 0.01 τ = 0.025 τ = 0.05 all

h = 1 0.000 0.092 0.294 0.006
h = 2 0.000 0.011 0.161 0.002
h = 3 0.008 0.011 0.131 0.001
h = 4 0.002 0.023 0.176 0.008
h = 5 0.005 0.001 0.141 0.010
h = 6 0.010 0.032 0.236 0.012
h = 7 0.312 0.073 0.069 0.137
h = 8 0.228 0.065 0.091 0.125
h = 9 0.030 0.113 0.029 0.028
h = 10 0.122 0.044 0.021 0.010
all 0.013 0.011 0.063 0.010
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RESULTS - MZ REGRESSION LINES

Compare estimated MZ regression line for h = 1 and τ = 0.01 (red)
vs. the diagonal (orange), qualitatively same picture emerges for all
quantiles and horizons!
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MACRO APPLICATION

▶ Quantile forecasting in macro is increasing in popularity since
Manzan (2015)

▶ GaR literature has typically focused on quarterly real GDP
growth using NFCI (Adrian et al., 2019)

▶ More recently applied to quarterly employment, inflation
(Adams et al., 2021)

▶ Explore optimality of model-based forecasts of different U.S.
macro variables

▶ We use monthly variables
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DATA AND SET-UP
▶ Target variables: G = 4 different targets as in Manzan (2015)

▶ Consumer Price Index for All Urban Consumers (CPIAUCSL)
▶ Industrial Production: Total Index (INDPRO)
▶ All Employees, Total Nonfarm (PAYEMS)
▶ Personal Consumption Expenditures Excluding Food and Energy

(Chain-Type Price Index) (PCEPILFE)
▶ Predictor variables: Autoregressive term, Chicago Fed National

Financial Conditions Index (NFCI)
▶ Model: Linear quantile regression (QADL)
▶ Data source: Federal Reserve Economic Data (FRED)
▶ Data span: 1984M1 to 2019M12
▶ Estimation scheme: recursive window
▶ Sample sizes: T = 432 monthly obs split into R = P = 216
▶ Horizons: H = 12 so h = 1, ..., 12
▶ Quantile levels: T = {0.1, 0.25, 0.5}
▶ Bootstrap: block length l = 4, B = 1000 draws
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MINCER-ZARNOWITZ TEST RESULTS

Stat 90% 95% 99% p-value

Joint 38264.280 28908.454 45259.085 86531.304 0.067

CPIAUCSL 18269.966 18033.852 32452.813 66594.353 0.099
INDPRO 4258.078 7578.204 11224.918 24413.160 0.222
PAYEMS 871.704 1574.085 2060.305 4994.712 0.308
PCEPILFE 14864.532 2316.907 2792.387 3678.394 0.000

▶ Evidence of miscalibration for inflation series (PCEPILFE and
CPIAUCSL), not for real series

▶ For PCEPILFE and CPIAUCSL the largest contribution to the test
statistic comes from quantile level τk = 0.1
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AUGMENTED MINCER-ZARNOWITZ TEST RESULTS

Re-run Augmented MZ test with additional regressors (G − 1 = 3
variables other than target)

Stat 90% 95% 99% p-value

CPIAUCSL 21984.030 19794.203 29896.138 57657.304 0.085
INDPRO 5194.690 8722.551 12596.841 27604.813 0.224
PAYEMS 723.354 1494.399 2011.985 4470.360 0.350
PCEPILFE 15648.207 2455.174 2938.071 3801.048 0.000

▶ No extra regressor seems to improve forecasts for real variables
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CONCLUDING REMARKS

▶ We propose Mincer-Zarnowitz tests for quantile forecast
optimality at multiple horizons and multiple quantile levels.

▶ Test that is straightforward to implement can be extended to:
1. Augmented Mincer-Zarnowitz test
2. Multiple time series

▶ Simulation evidence (not presented) shows tests work well
▶ Two empirical applications showcase the MZ test and extensions
▶ Future work: distributional or probabilistic forecasts have

become active research field, and test could be adapted using a
many moment equality framework (Chernozhukov et al., 2021).
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