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Motivation

♢ Quantile forecasts of macroeconomic time series allow for
a quantile-specific predictive relationship between the
target series and the covariates.

♢ The tails are associated with phases of high economic
interest.

♢ The literature on macroeconomic forecasting has paid
increasing attention to now- and forecasts of quantiles

(see, e.g., Manzan, 2015; Korobilis, 2017; Adrian, Boyarchenko, and
Giannone, 2019; Carriero, Clark, and Marcellino, 2020; Adams,
Adrian, Boyarchenko, and Giannone, 2021; Clark, Huber, Koop,
Marcellino, and Pfarrhofer, 2022; Prüser and Huber, 2023).
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Motivation

♢ Another recent development in macroeconomic
forecasting is the use of textual data.

♢ Textual predictors provide timely information that may
embed complementary signals to (hard) economic
indicators

(see e.g., Larsen and Thorsrud, 2019; Bybee, Kelly, Manela, and

Xiu, 2021; Ellingsen, Larsen, and Thorsrud, 2022).

♢ Most studies that use textual predictors for
macroeconomic time series forecasts analyze only point
forecasts.
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What we do

♢ We explore the role of textual predictors for quantile now-
and one-step-ahead forecasts.

♢ Linear and non-linear models:

♢ Bayesian quantile regressions with different shrinkage priors
♢ Gaussian Process Regressions
♢ QR forests.

♢ Four target variables:

♢ Employment
♢ Inflation
♢ Production
♢ Consumer sentiment.
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Bayesian quantile regressions

♢ The Bayesian QR can be stated as:

yt+h = xtβτ + ετ,t+h.

♢ The shrinkage priors can be written in the general form:

βτ|ψτ1 , . . . ,ψτK ,λτ ∼
K

∏
j=1

N (0,ψτjλτ) , ψτj ∼ u, λτ ∼ π.

♢ Ridge: ψτj = 1 ∀τ, j and λτ ∼ IG (0, 0)

♢ Horseshoe:
√

ψτj ∼ C+ (0, 1) and
√

λτ ∼ C+ (0, 1)

♢ Lasso: ψτj ∼ G (1,λτ) and λτ ∼ G (0, 0).
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Gaussian Process Regression

♢ Gaussian Process Regression is a non-parametric Bayesian
method that elicits a process prior on the function
gτ (xt) :

gτ (xt) ∼ GP (µτ (xt) ,K (xt , xt)) ,

♢ We set the mean function µτ (xt) to zero.

♢ The kernel function K
(
xt , x

′
t

)
describes the relationship

between xt and xt, for t, t =1, . . . ,T .

♢ We choose a squared exponential kernel:

K (xt , xt) = w1 × e−
w2
2 ∥xt−xt∥2 .
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QR forests
♢ QR forests is a non-parametric frequentist method that

performs conditional quantile estimation based on an
ensemble of trees (Meinshausen, 2006).

♢ The conditional distribution function y , given X = x , is

F (y |X = x) = P (Y ≤ y |X = x) = E
(

1{Y≤y}|X = x
)
.

♢ E
(

1{Y≤y}|X = x
)
is approximated by the weighted

mean over the observations 1{Y≤y},

F̂ (y |X = x) =
n

∑
i=1

wi (x) 1{Y≤y},

where the weights wi (x) are computed over the
collection of trees.
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Textual predictors from topic models

Source: Blei, D.M. (2012). Probabilistic Topic Models.

♢ Correlated Topic Model with 793,013 newspaper articles
from The New York Times and The Washington Post.

♢ 80 topic proportions (attention measures) as textual
predictors.
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Examples of topic proportions

Topic 46: Housing Topic 71: Inflation

Topic 9: Debt Crisis Topic 27: Oil and War
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Examples of estimated topic proportions (monthly averages).
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Forecasting setup

♢ We consider three sets of predictive variables:

♢ FRED-MD predictors only
(vintage data, McCracken and Ng (2016))

♢ Textual predictors only
♢ FRED-MD predictors & textual predictors.

In each setting we include 12 lags of the target variable.

♢ For nowcasts of month t, we use

♢ macro predictors from t − 1, released in t
♢ financial and textual predictors from t.
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Forecasting setup

♢ Our estimation sample starts in 1980:06.

♢ We run recursive estimations based on an expanding
window.

♢ Our evaluation period ranges from 1999:10 to 2021:12.

♢ We evaluate our forecasting models with the quantile
score (QS):

QSτ,t+h = (yt+h −Qτ,t+h)
(

τ − 1{yt+h≤Qτ,t+h}

)
.

♢ τ: τ = 5%, 10%, 25%, 50%, 75%, 90%, 95%.
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Nowcasts: QS relative to AR(1)
Horseshoe Lasso Ridge Gaussian Processes QR Forest
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One-step-ahead forecasts: QS relative to AR(1)
Horseshoe Lasso Ridge Gaussian Processes QR Forest
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Main results

♢ Addition of textual predictors often leads to lower
quantile score, in particular

♢ in the tails,
♢ for the linear forecasting models.

♢ Ridge prevails over Horseshoe and Lasso.

♢ Gaussian Process Regressions have a slight edge over QR
forests.

♢ Quantile scores are mainly U-shaped for linear models and
hump-shaped for non-linear models.
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Which predictors determine the quantile forecasts?

♢ We wish to ensure comparability for predictor importance
across heterogeneous forecasting methods.

♢ We approximate the quantile predictions Qτ,t+h with a
Lasso-type regression (Woody, Carvalho, and Murray,
2021):

β∗
τ = argmin

βτ

T−h

∑
t=t0

(
Qτ,t+h − β′

τxt
)2

+ λ
K

∑
j=1

|βτ,j | .
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Nowcasts: Variable importance
τ = 10%

Horseshoe Lasso Ridge Gaussian Processes QR Forest
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One-step-ahead forecasts: Variable importance
τ = 10%

Horseshoe Lasso Ridge Gaussian Processes QR Forest
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Key takeaways

♢ We have examined the incremental predictive power of
textual predictors for quantile forecasts.

♢ We have considered forecasting models that feature linear
and non-linear (quantile-specific) predictive relationships.

♢ Non-linear predictive relationships achieved the best
forecasting results.

♢ Overall, combinations of FRED and textual predictors
produced the most accurate forecasts, especially in the
left tail.
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Nowcasts: Variable importance I
τ = 10%

Horseshoe Lasso Ridge Gaussian Processes QR Forest
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One-step-ahead forecasts: Variable importance I
τ = 10%

Horseshoe Lasso Ridge Gaussian Processes QR Forest
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