Forecasting Macroeconomic Tail Risk
in Real Time:

Do Textual Data Add Value?

Philipp Adammer®  Jan Priiser”™  Rainer A. Schiissler™™"

*University of Greifswald
**TU Dortmund

***University of Rostock

12th ECB Conference on Forecasting Techniques, Frankfurt

June 13, 2023

1/18



Motivation

{>  Quantile forecasts of macroeconomic time series allow for
a quantile-specific predictive relationship between the
target series and the covariates.

{)  The tails are associated with phases of high economic
interest.

{» The literature on macroeconomic forecasting has paid
increasing attention to now- and forecasts of quantiles
(see, e.g., Manzan, 2015; Korobilis, 2017; Adrian, Boyarchenko, and
Giannone, 2019; Carriero, Clark, and Marcellino, 2020; Adams,

Adrian, Boyarchenko, and Giannone, 2021; Clark, Huber, Koop,
Marcellino, and Pfarrhofer, 2022; Priiser and Huber, 2023).
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Motivation

{> Another recent development in macroeconomic
forecasting is the use of textual data.

{» Textual predictors provide timely information that may
embed complementary signals to (hard) economic
indicators

(see e.g., Larsen and Thorsrud, 2019; Bybee, Kelly, Manela, and
Xiu, 2021; Ellingsen, Larsen, and Thorsrud, 2022).

{)> Most studies that use textual predictors for
macroeconomic time series forecasts analyze only point
forecasts.
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What we do

{> We explore the role of textual predictors for quantile now-
and one-step-ahead forecasts.

{> Linear and non-linear models:

{> Bayesian quantile regressions with different shrinkage priors
{) Gaussian Process Regressions
{ QR forests.

{>  Four target variables:

<SS

Employment
Inflation

Production
Consumer sentiment.
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Bayesian quantile regressions

{) The Bayesian QR can be stated as:
Yeth = XtBr + €1 t4h-

{» The shrinkage priors can be written in the general form:
K
ﬁThPle"'ylPTKy/\TNHN(OlejAT)v lijNur ATNTC
j=1

¢ Ridge: ;=1 Vt,jand Ar ~ZG (0,0)
{ Horseshoe: \/P; ~CT (0,1) and v/Ar ~C*(0,1)
& Lasso: P ~ G (1,A¢) and A ~ G (0,0).
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Gaussian Process Regression

¢

Gaussian Process Regression is a non-parametric Bayesian
method that elicits a process prior on the function

8t (Xt) :
gr (xe) ~ GP (pr (xe) K (xe.x¢)) ,

We set the mean function pr (x;) to zero.

The kernel function (xt, xi) describes the relationship
1,...,

between x; and x¢, for t, t =1, T.
We choose a squared exponential kernel:

— 2 [[xe—x(1?
IC (xe,x¢) = wy x e 2 IXemxtll
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QR forests

%

QR forests is a non-parametric frequentist method that
performs conditional quantile estimation based on an
ensemble of trees (Meinshausen, 2006).

The conditional distribution function y, given X = x, is

FyIX=x)=P(Y <y|X=x)=E (ﬂ{ygyﬂx :x) .

E <11{y§y}\X = x) is approximated by the weighted
mean over the observations 1y <y,

n

FylX =x) =Y wi (x) Ly<,,
i=1

where the weights w; (x) are computed over the
collection of trees.
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Textual predictors from topic models

Topic proportions and
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Source: Blei, D.M. (2012). Probabilistic Topic Models.

{» Correlated Topic Model with 793,013 newspaper articles
from The New York Times and The Washington Post.

{» 80 topic proportions (attention measures) as textual
predictors.
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Examples of topic proportions
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Examples of estimated topic proportions (monthly averages).
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Forecasting setup

{>  We consider three sets of predictive variables:

{> FRED-MD predictors only

(vintage data, McCracken and Ng (2016))
{>  Textual predictors only
{> FRED-MD predictors & textual predictors.

In each setting we include 12 lags of the target variable.
{>  For nowcasts of month t, we use

{>  macro predictors from t — 1, released in t
{> financial and textual predictors from t.
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Forecasting setup

> Our estimation sample starts in 1980:06.

> We run recursive estimations based on an expanding
window.

{» Our evaluation period ranges from 1999:10 to 2021:12.

> We evaluate our forecasting models with the quantile

score (QS):

QST,H—h - ()/t—l-h - QT,H-/'I) (T - 1{yt+h§Qr,t+h}) )

¢ 1 T = 5%, 10%, 25%, 50%, 75%, 90%, 95%.
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Nowcasts: QS relative to AR(1

Lasso Ridge Gaussian Processes QR Forest
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One-step-ahead forecasts: QS relative to AR(1)

Lasso Ridge Gaussian Processes QR Forest
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Main results

¢

Addition of textual predictors often leads to lower
quantile score, in particular

{> in the tails,
{» for the linear forecasting models.

Ridge prevails over Horseshoe and Lasso.

Gaussian Process Regressions have a slight edge over QR
forests.

Quantile scores are mainly U-shaped for linear models and
hump-shaped for non-linear models.
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Which predictors determine the quantile forecasts?

> We wish to ensure comparability for predictor importance
across heterogeneous forecasting methods.

> We approximate the quantile predictions Qr 1, with a
Lasso-type regression (Woody, Carvalho, and Murray,
2021):

T—h K
B; =argmin Y (Qr e — Bixe)? + A Y Bl
j=1

Br t=ty
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Nowcasts: Variable importance

T=10%
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One-step-ahead forecasts: Variable importance

T=10%
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Key takeaways

¢

We have examined the incremental predictive power of
textual predictors for quantile forecasts.

We have considered forecasting models that feature linear
and non-linear (quantile-specific) predictive relationships.

Non-linear predictive relationships achieved the best
forecasting results.

Overall, combinations of FRED and textual predictors
produced the most accurate forecasts, especially in the
left tail.
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owcasts: Variable importance |
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One-step-ahead forecasts: Variable importance |
T=10%
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