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Abstract

The rank of the spectral density matrix conveys relevant information in a va-
riety of modelling scenarios. Phillips (1986) showed that a necessary condition
for cointegration is that the spectral density matrix of the innovation sequence at
frequency zero is of a reduced rank. In a recent paper Forni and Reichlin (1998)
suggested the use of a generalised dynamic factor model to explain the dynamics of
a large set of macroeconomic series. Their method relied also on the computation
of the rank of the spectral density matrix. This paper provides formal tests to
estimate the rank of the spectral density matrix at any given frequency. The tests
of rank at frequency zero are tests of the null of ‘cointegration’, complementary to

those suggested by Phillips and Ouliaris (1988) which test the null of ‘no cointe-
gration’.
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1 Introduction

The equivalence of time-domain and frequency-domain analysis of time series is well
documented in the statistical and econometric literature. Nevertheless, the use of spectral
densities is by far less widespread than the use of covariances in the econometric analysis
of time series. This paper aims to apply both well known and new techniques of rank
determination of matrices to the determination of the rank of the spectral density matrix.
As the discussion below shows, the need for such techniques is clear from the existing
econometric literature.

The idea that the movements in a number of economic variables can be represented
by relatively few driving forces was first suggested by Stone (1947). Stone’s use of
principal components was purely static. Since then there has been a considerable amount
of work using alternative data reduction techniques to promote parsimony in dynamic
model specification. In a recent paper Forni and Reichlin (1998) suggested the use of a
generalised dynamic factor model to describe the dynamics of sectoral industrial output
and productivity for the US economy from 1958 to 1986. The number of common shocks
driving those series is equal to the rank of their spectral density matrix. The foundations
for this result are to be found in the literature on dynamic principal components, see
Brillinger (1981). This issue is further explored in Forni, Hallin, Lippi, and Reichlin
(1999a) and Forni, Hallin, Lippi, and Reichlin (1999b) where a ‘generalised dynamic
factor’ model, novel to the literature, is proposed. Forni and Reichlin (1998) pointed
that no standard test of the rank of the spectral density matrix was available, and
consequently this issue was partially sidestepped.

Phillips (1986) showed that a necessary condition for cointegration is that the spectral
density matrix of the innovation sequence of an I(1) multivariate process has a reduced
rank at frequency zero. Phillips and Ouliaris (1988) suggested two procedures for de-
tecting the presence of cointegration. The drawback of their method was that they were
tests of the null of ‘no cointegration’. Namely a test of the hypothesis that the r small-
est eigenvalues are greater than zero. The tests of rank of the spectral density matrix
suggested in this paper may be thought of, under certain conditions, as tests of the null
of ‘cointegration’, i.e. tests of the null that the r smallest eigenvalues are equal to zero.

In order to apply standard tests of rank, it is helpful to think of the estimate of
the spectral density matrix as an estimate of a covariance matrix between two newly
defined complex variate random processes. Two alternative approaches for determining

the rank of the spectral density matrix are presented. On the one hand, the Bartlett



(1947) procedure is applicable in this context because the problem can be recast in terms
of canonical correlations. On the other hand, the Cragg and Donald (1996) approach is
more general as 1t only requires that an estimate of that matrix exists having a normal
asymptotic distribution with a covariance matrix whose rank is known. An information
criterion method suggested by Akaike (1976), which builds upon the Bartlett (1947)
procedure is also described.

Section 2 presents the analytical framework. Expressions for two alternative estimates
of the spectral density matrix are provided here, together with some background material.
The extensions of the Bartlett (1947) test of rank, Akaike (1976) information criterion
method and Cragg and Donald (1996) test to the case of the spectral denstity matrix are

described in sections 3 and 4. Section 5 concludes.

2 Background Theory

2.1 The Complex Multivariate Normal Distribution

In this paper references are made to the complex normal distribution. A ¢-random
variable y, with complex value components is complex multivariate normally distributed
with mean g and covariance matrix €2, and denoted as N%(u, ), if the 2¢-random

variable with real components (Re y}, Im y})’ is distributed as
N Re p 1| Re2 —ImQ
Imp |’ 21 ImQ ReQ
where Re and Im are operators which extract the real and imaginary part of a complex
variate written in its cartesian form, and N denotes the multivariate normal distribution.
If a set of vector random variables, y,, ...y, are 1.i.d zero mean complex multivariate

normal with covariance €, then >1' ; y.¥,’ is said to have a complex Wishart distribution

with n degrees of freedom, and is denoted by W¢(n, £2).

2.2 Spectral Density Matrix Estimates

Denote a zero mean, wide sense stationary m-vector process by {@;}32,. The spectral
density matrix of @, is defined as the infinite Fourier transform of the covariance matrix
function,

3(6) = (2m)" i e "

k=—o00



for § € [—m,n] where I'y = E{x;2;_,}. Given a sample of T' observations an obvious
estimate of the spectral density matrix is given by:

T

2(6) = (27)7 | R

—1
k:—(T—l)

where I'y, = % ZtT:_1|k| xix, . 273(#) is known as the periodogram. It is well known that

the periodogram is an inconsistent but asymptotically unbiased estimate of the spectral
density matrix, multiplied by 27 and is asymptotically distributed as a complex Wishart
variable with 1 degree of freedom. This suggests some form of smoothing can provide a
consistent estimate of the spectral density matrix!. Two approaches are usually adopted.
Firstly, methods that rely on ‘smoothing’ the autocovariance matrix function which take

the form:

(8) = fj Diw(k, M)e=*o (1)
k=—M

where M is a bandwith parameter and w(k, M) is a kernel or spectral window satisfying

certain regularity conditions, (see, e.g. Fuller (1996)). As long as M — oo and T7'M —

0as T — oo, 2(9) provides a consistent estimate of X(8), see, e.g., Fuller (1996, pp.

382-383).

Secondly methods that rely on ‘smoothing’ the periodogram itself over the frequencies,

i.e. averaging adjacent frequency ordinates. These estimates take the form,

1

2(6) = me (6 +k/T) (2)

=—M

For finite M this estimate is still inconsistent, asymptotically unbiased for the spectral
density matrix and asymptotically distributed as (2M + 1)"'WY(2M + 1,3%(6,)), (see
Brillinger (1981, pp. 245)). This is the simplest form of a smoothed periodogram estimate
for the spectral density matrix. Different weights can be assigned to the periodogram
coordinates X (§ + k/T), see Brillinger (1981, Chapter 7). If we allow M — oo as
T — oo but impose M/T — 0 we get a consistent estimate. In particular we obtain
the result that \/M(U@C(ENJ(G)) — vec(X(8))) is asymptotically complex normal? with
a covariance matrix whose element giving the covariance between X; ;(6) and 3, ,(0)is
given by ¥, ;(6)3, ,(0), where X, ;(0) is the (¢, 7)-th element of 3(8). We will denote this
covariance matrix by V' and its estimate, obtained by using the estimated spectral density

matrix, by V. More details may be found in e.g. Brillinger (1981, pp. 262) or Brockwell

L As we are mainly interested with the rank of the spectral density matrix, in the rest of the discussion
we drop the normalising constant 27.

ZNote that this result crucially depends on regulating the dependence properties of the series. For
more details see Brillinger (1981, Chapter 2).



and Davis (1991, pp. 447). Alternative strategies to select the weighting parameters to
compute 2(9) and EN](GJ) are well documented in the literature, see Priestley (1981) or
Brockwell and Davis (1991) for further details.

3 Bartlett (1947) test of rank: Applicable to 3(f)

A well known result in canonical correlation analysis is that given two random vector
series ®¢1; and @4, the rank of their covariance matrix is equal to the number of nonzero
canonical correlations. Further details are in Anderson (1984). Note that for a given
bandwith M and a chosen kernel w(k, M), the spectral density matrix estimate 2(9) in
(2) can be written as 2(9) = ﬂ‘I’(G) where
I, x %y

I, % ¢

I, x ¢
I, is an identity matrix of order m, and ¢/ = w(s, M)e"*?.

The interesting feature is that the spectral density matrix estimate is equivalent to
the estimate of the covariance matrix between two complex variates, and defined as
3(8) = E{enx),}, where ; = @; and &y = ¥(0) (:13;+M,...
implies that testing for the rank of 2(9) above is equivalent to testing for the number of

!
! ! :
,:Bt,...,:Bt_M) . This

positive canonical correlations between @; and ®. To compute the canonical correla-

tions between @1, and ®y we proceed as follows. Define the matrices X1, X, and ¥(6)

as:
— 7 - — I I -
x, Ty T, 0
. - ./ e
Ty T (2xM) T py 0
! ! ! 2
Trr+1 T (2x M)+1 Trr+1 T
X1 — e X2 — . .
' ' ' '
Tr_m LT ‘f?T—M :?T—(ZXM)
TT_M+1 0 LT _M+1 Tr_(2xM)+1
. e / /
L T L 0 T Tr_pm

Compute the QR decomposition of the matrices X and X, W¥(8) given above, i.e. X =
Q,R; and X,¥(0) = Q,R;. The canonical correlations between the vectors &y; and @4,
are the singular values of Q| Q,. We denote the canonical correlations as p;, ¢ = 1,...,m.

Bartlett (1947) provided a criterion for testing the null hypothesis that the last m — r*



canonical correlations are zero, i.e., Hyx : ppxyy = -+ = py, = 0. Under the null hypothesis
and assuming stationarity of the input-output multivariate system

A 111 (I I

i=r*41

BA:[

Fujikoshi (1974) proved that this test procedure is based on the likelihood ratio method.
His results can easily be extended to complex random variables providing justification
for the application of the method in the current context. Bartlett’s test was developed
under independence and normality assumptions, but his result remains valid asymptot-
ically following arguments by Kohn (1979) on the likelihood ratio tests for dependent

observations.

3.1 Akaike (1976) Information Criterion

Akaike (1974) and Akaike (1976) showed that the number of linearly independent com-
ponents of the projections of the previously defined @, onto the linear space spanned
by the components of @y is identical to the number of nonzero canonical correlations
between ®; and ®5,. When @; is Gaussian, canonical correlation analysis between @1,
and @y is equivalent to maximum likelihood estimation of the linear model: @ =
Wy + €4, see Anderson (1984). The number of free parameters for this model is:
F(r*) = {[s1(s1 + D)]/2} + {[s2(s2 + 1)]/2} + r*(s1 + s2 — r*) where s; denotes the di-
mension of the vector #; and sy denotes the dimension of 4. The first two terms are
the number of free parameters of the covariance matrices of &1, and @, respectively, and
the last term gives the number of free parameters in matrix W. Akaike (1976) defined an

information criterion for model fitting, and by extension rank determination, as:
AIC(r")=Tln H(l — ,6?) +2F(r")
=1

where p; are the estimated canonical correlation coefficients previously defined. This
criterion penalises models with a large number of parameters, and by extension large
rank, and favours parsimonious representations. Schwarz (1978) suggested an alternative
penalty on increasing the number of parameters. The information criterion suggested by

Schwarz (1978) amounts to replace 2F(r*) above by In(T)F(r*). The penalty used by
this method is much more severe than that used by AIC.

4 Cragg and Donald test (1996)

We give an account of the general test of rank proposed by Cragg and Donald (1996)

before discussing modifications for the problem at hand. For a general matrix A, the



procedure proposed by Cragg and Donald (1996) is based on the transformation of the
matrix A using Gaussian elimination with complete pivoting®. r* steps of Gaussian
elimination with complete pivoting on matrix A amounts to the following operations:

Ap(r7) Aga(rr) ]

QT*RT*QT*—IRT*_l ...QlRlACl ---Cr*—ICr* = [ 0 AZZ(T*)

where R, and C,; are pivoting matrices for step 1 and @, are Gauss transformation ma-
trices. The pivoting matrices used to perform the first r* steps of Gaussian eliminination

are applied to A to obtain the following relation

RT*RT*—l . .RlACl...CT*_lCT* - RAC - F - l Fll(r ) F12(7“ ) ]

Fy(r*) Fa(rr)

where F is partitioned accordingly, i.e. Fy1(r*) is of dimension r* x r*. Note that in this
case F'11(r*) has full rank, under the null hypothesis that r* is equal to the true rank. It
then follows, see Cragg and Donald (1996), that Faoy(r*) — Fo (r*)F1 (r*)Fi2(r) = 0.
The estimated counterpart of the above relation, i.e. Fzz — F21F;11F12 = Azz(r*), may
be used as a test statistic of the hypothesis that the rank of A is r*. Under regularity
conditions, including the requirement that the covariance matrix of the asymptotically
normally distributed matrix \/TUGC(A — A), denoted by V', has full rank, the following

result can be shown, under Hy.

VTvee(Ap(r*)) % N0, YV Y)

1A —1'

where Y = ®, © ®, and &, = |—Fy F, Im_r*] R, &, — [—FRFH I, .. C" and

% denotes convergence in distribution. Then,
. . " onag =1 .
f = Tvec AQQ(T*)/(TVT/) vec Azz(r*) i> X(zm_r*)2

where Y and V are the sample estimates of X and V and Y7 denotes the y? distribution
with [ degrees of freedom. The procedure uses the inverse of the estimated asymptotic
covariance matrix of A, but this may not be available if the covariance matrix is of
reduced rank. However, Camba-Mendez and Kapetanios (2000) proved that the use of
the Moore-Penrose inverse, denoted as (YVY/)"', is valid if the rank of V' is known and
rk[V] = rk[V], VT > Ty, for some finite Ty. Note that by construction the estimate of

the asymptotic covariance matrix estimator of 5]((9), V', has this property. A sequential

application of the Cragg and Donald test of rank can provide a consistent estimate of

3For details on Gaussian elimination with complete pivoting see Cragg and Donald (1996) or Golub

and Loan (1983).



the rank of A if the significance level used in the test converges to zero as the number
of observations tends to infinity (See Hosoya (1989)).

We note that the Gaussian elimination results underlying the Cragg and Donald
test remain valid for complex matrices such as 3(6) and its estimator 5](9) To see
that we simply note that the r-th step of Gaussian elimination simply involves complete
pivoting so as to bring the largest elements of the matrix in absolute value to the r-
th place in the diagonal and subsequent zeroing out of the elements below that diagonal
elements. Therefore, an m X m complex matrix with rank r subject to r steps of Gaussian
elimination will be transformed into a matrix whose lower RHS m — r X m — r submatrix
will be made up of zeros. The estimated counterpart of such a submatrix will have
a multivariate complex normal with zero mean as long as the matrix is multivariate
complex normal before the application of Gaussian elimination. This implies that the real
and imaginary parts of the, typically complex in the case of spectral density estimates,
elements of this submatrix, will be normally distributed with known covariance matrix,
leading to a standard y? test just like in the case of the Cragg and Donald test with real
matrices.

Similar results may hold for the estimator 2(9) conditional on an asymptotic nor-
mality result for it similar to that provided by Brillinger (1981, pp. 262) for 5]((9) We
do not know of a statement of such a result in the literature, although it seems safe to

conjecture that such a result holds.

5 Conclusion

This paper has formulated a variety of rank detemination procedures for the rank of the
spectral density matrix at any frequency. Different estimators of the spectral density
matrix have been considered. Both testing procedures and information criteria have
been suggested and justified as valid rank determination methods. The need for such
techiques becomes apparent in the econometric literature in areas such as multivariate
factor models and cointegration. Phillips and Ouliaris (1988) suggested tests of the null
of ‘no cointegration’ which amounted to a test of the hypothesis that the r smallest
eigenvalues of the spectral density matrix of the innovation sequence at frequency zero
are greater than zero. Phillips and Ouliaris (1990) expanded on the issue of choice
of the null hypothesis in cointegration testing by pointing out that adopting the null
hypothesis of cointegration may be more sensible from a methodological point of view

given that cointegration is the focus of interest. However, it was also pointed out that



standard test statistics based on the spectral density matrix provided inconsistent tests
under the null hypothesis of no cointegration. This paper has described tests of the
rank of the spectral density matrix which may serve, at frequency zero, as tests of the
null of ‘cointegration’. It is clear that, as long as a consistent estimate of the spectral
density matrix of the innovation process exists and has an asymptotic complex normal
distribution, the application of the Cragg and Donald test will provide a consistent testing
procedure for cointegration. The tests of the rank of the spectral density matrix described
in this paper are also relevant to identify the structure of a vector times series under
the approach of dynamic principal components. Further use of the techniques may be
envisaged in terms of restricting the dimensionality of cyclical components at individual
frequencies, possibly motivated from economic theory, thereby extending the common

cycle analysis discussed in, e.g., Vahid and Engle (1993) and Engle and Issler (1995).
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