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Abstract

We propose a novel framework to assess financial system risk. Using a dynamic factor

framework based on state-space methods, we construct coincident measures (‘ther-

mometers’) and a forward looking indicator for the likelihood of simultaneous failure

of a large number of financial intermediaries. The indicators are based on latent macro-

financial and credit risk components for a large data set comprising the U.S., the EU-27

area, and the respective rest of the world. Credit risk conditions can significantly and

persistently de-couple from macro-financial fundamentals. Such decoupling can serve

as an early warning signal for macro-prudential policy.

Keywords: financial crisis; systemic risk; credit portfolio models; frailty-correlated

defaults; state space methods.

JEL classification: G21, C33
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Non-technical summary

We propose a novel empirical framework to assess financial system risk. Using recent

statistical techniques we infer common factors underlying macro-financial and credit risk

conditions from a large data set comprising the U.S., the E.U. area, and the respective rest

of the world. The extracted risk factors are then combined into coincident risk measures and

early warning indicators for financial distress.

Coincident risk measures are referred to as ‘thermometers’. As an analogy, such indicators

can be plugged into the financial system to read off its ‘heat’. For example, we estimate a

broad financial sector failure rate that takes into account a large cross section of banks and

financial non-banks. This failure rate represents the share of currently active financial firms

which, at current levels of stress, can be expected to fail over the next three months. We

further estimate the probability of simultaneous failure of a large number of financial sector

firms. For example, we may be interested in the time-varying probability that 1% or more

of the currently active financial firms fail over a one year horizon.

A high cross-sectional dimension poses computational challenges to various measures for

financial stability, see for example Segoviano and Goodhart (2009). Using a dynamic factor

structure, we effectively overcome these problems and capture the dynamics of approximately

400 European and 450 U.S. financial firms, and many more non-financial firms by combining

actual failure counts, macroeconomic data, and expected default frequencies for inference on

financial risk conditions.

Our proposed early warning indicator for financial distress is based on current deviations

of credit risk conditions from their underlying macro-financial fundamentals. In an empir-

ical study of international credit and macro data, we find that credit risk conditions can

significantly and persistently de-couple from fundamentals due to e.g. unobserved changes

in credit supply and the ease of credit access. We demonstrate that such decoupling has

preceded financial and macroeconomic distress in the past. As a result, such decoupling can

serve as an early warning signal for financial stability policies.
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”One of the greatest challenges ... at this time is to restore financial and economic

stability. ... The academic research community can make a significant contribution in

supporting policy-makers to meet these challenges. It can help to improve analytical

frameworks for the early identification and assessment of systemic risks.” Jean-Claude

Trichet, President of the ECB, Clare Distinguished Lecture in Economics and Public

Policy, University of Cambridge, December 2009.

1 Introduction

Macro-prudential oversight seeks to focus on safeguarding the financial system as a whole.

This has proven to be a major issue in the wake of the recent financial crisis. The debate

on macro-prudential policies and potential warning signals ignited by the crisis is currently

under full swing. Many of the models constructed before the crisis have fallen short in this

respect. For example, regulators have learned the hard way that cross-sectional correlations

between asset and credit exposures can have severe consequences, even though each of these

exposures might be qualified as safe when considered in isolation. Cross-sectional dependence

undermines the benefits of diversification and may lead to a ‘fallacy of composition’ at the

systemic level, see for example Brunnermeier, Crocket, Goodhart, Persaud, and Shin (2009).

In particular, traditional risk-based capital regulation at the individual institution level may

significantly underestimate systemic risk by neglecting the macro impact of a joint reaction

of financial intermediaries to a common shock.

There is widespread agreement that financial systemic risk is characterized by both cross-

sectional and time-related dimensions; see, for example, Hartmann, de Bandt, and Alcalde

(2009). The cross-sectional dimension concerns how risks are correlated across financial in-

stitutions at a given point in time due to, for example, direct and indirect linkages across

institutions and prevailing default conditions. The time series dimension concerns the evolu-

tion of systemic risk over time due to, for example, changes in the default cycle, changes in

financial market conditions, and the potential buildup of financial imbalances such as asset

and credit market bubbles.

In contrast to the broad consensus on the set of models, indicators, and analytical tools for

macroeconomic and monetary policy analysis, such agreement is absent for macro-prudential

policy analysis. The current paper makes a step in filling this gap. In particular, we make

two contributions to the existing literature on systemic risk assessment.

First, we propose a unified econometric framework for the measurement of global macro-

financial and credit risk conditions based on state space methods. The framework follows

the mixed-measurement dynamic factor model (MM-DFM) approach as introduced by Koop-
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man, Lucas, and Schwaab (2010). Our model provides a diagnostic tool that tracks the evo-

lution of macro-financial developments and point in time risk conditions, as well as their joint

impact on system stability. Such a diagnostic tool for systemic risk measurement is definitely

needed as a first step to start assessing and communicating this risk. Second, we develop a

set of coincident and forward looking indicators for financial distress based on the empirical

output of our analysis. We distinguish ‘thermometers’ and a ‘crystal ball’. Thermometers

are coincident risk indicators that, metaphorically, a policy maker can plug into the financial

system to read off its ‘heat’. A crystal ball is a forward looking early warning indicator that

- to some extent - permits a glimpse into the future of financial stability conditions. Early

warning indicators may be based on estimated deviations from fundamentals that accrue in

the present. Obviously, constructing a useful early warning signal is substantially harder

than an assessment of current risk conditions.

We use our framework to study systemic risk conditions across three broad geographical

regions, i.e., (i) the U.S., (ii) current EU-27 countries, and (iii) all remaining countries. In

this way, our perspective departs substantially from most earlier studies that typically focus

on one region only, in particular the U.S. Several people have stressed the importance of such

an international perspective, see e.g. de Larosiere (2009), and Brunnermeier et al. (2009).

It requires one to look beyond domestic developments for detecting financial stability risk.

In the context of the recent crisis. For example, the saving behavior of Asian countries

has been cited as a contributing factor to low interest rates and easy credit access in the

U.S., see e.g. Brunnermeier (2009). Similarly, developments in the U.S. housing market

have triggered distress for European financial institutions. In our MM-DFM model, we

allow for the differential impact of world business cycle conditions on regional default rates,

unobserved regional risk factors, as well as world-wide industry sector dynamics.

Our empirical study is based on worldwide credit data for more than 12.000 firms. We

differentiate between the impact of macro and financial market conditions on defaults versus

autonomous default dynamics, and industry effects. We refer to the autonomous default

dynamics as frailty effects, see also Duffie, Eckner, Horel, and Saita (2009). Our empir-

ical findings show that the magnitude of frailty effects can serve as a warning signal for

macro-prudential policy makers. Latent residual effects are highest when aggregate de-

fault conditions (the ‘default cycle’) diverge significantly from what is implied by aggregate

macroeconomic conditions (the ‘business cycle’), e.g. due to unobserved shifts in credit sup-

ply. Historically, frailty effects have been pronounced during bad times, such as the savings

and loan crisis in the U.S. leading up to the 1991 recession, or exceptionally good times,

such as the years 2005-07 leading up to the recent financial crisis. In the latter years, default
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conditions are much too benign compared to observed macro and financial data. In either

case, a macro-prudential policy maker should be aware of a possible decoupling of system-

atic default risk conditions from their macro-financial fundamentals. The flexible tool of

mixed measurement dynamic factor models provides the necessary sophisticated and flexible

measurement tool needed for a timely detection of this decoupling.

Our work is related to two lines of literature. First, we relate to the work on accurately

measuring point-in-time credit risk conditions. In general, this is a complicated task since

not all processes that determine corporate default and financial distress are easily observed.

Recent research indicates that readily available macro-financial variables and firm-level in-

formation may not be sufficient to capture the large degree of default clustering present in

corporate default data, see e.g. Das, Duffie, Kapadia, and Saita (2007). In particular, there

is substantial evidence for an additional dynamic unobserved ‘frailty’ risk factor as well as

contagion dynamics, see McNeil and Wendin (2007), Koopman, Lucas, and Monteiro (2008),

Koopman and Lucas (2008), Lando and Nielsen (2008), and Duffie, Eckner, Horel, and Saita

(2009), and Azizpour, Giesecke, and Schwenkler (2010). ‘Frailty’ and contagion risk cause

default dependence above and beyond what is implied by observed covariates alone. Com-

pared to these earlier papers, our current paper takes an explicit international perspective.

In addition, it allows for both macro, frailty, and industry effects. Finally, it provides a

unified framework to integrate systemic risk signals from different sources, whether macroe-

conomic and financial market conditions, equity markets and balance sheet information (via

expected default frequencies, EDFs), or actual defaults.

Another line of literature relates to our second contribution, the construction of systemic

risk measures. Segoviano and Goodhart (2009) adopt a copula perspective to link together

the failure of several financial institutions. Their approach is partly non-parametric, whereas

our framework is parametric. However, our parametric framework lends itself more easily to

extensions to high dimensions, i.e., a large number of individual financial institutions. This

is practically impossible in the Segoviano and Goodhart (2009) approach due to the non-

parametric characteristics. Extensions to higher dimensions is a relevant issue in our current

study, as we take a, literally, global perspective of the financial system. Another paper

related to ours is Giesecke and Kim (2010). These authors take a hazard rate approach

with contagion and observed macro-financial factors (no frailty). In contrast to their model,

our mixed-measurements framework allows us to model the macro developments and default

dynamics in a joint factor structure. Giesecke and Kim, by contrast, take the macro data

as exogenous regressors in their analysis. Also, our study explicitly incorporates the global

dimension and distinguishes between global and regional factors.
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The remainder of this paper is set up as follows. In Section 2, we briefly review the liter-

ature on systemic risk measurement and discuss the desirable properties of a good systemic

risk measure. Section 3 discusses our econometric framework that is based on a mixed-

measurement dynamic factor model. Some details of parameter and factor estimation are

given as well. Section 4 presents the data. Sections 5 discusses the main empirical results and

presents coincident and forward-looking measures of financial distress. Section 6 concludes.

2 Quantitative measures of systemic risk

2.1 A post-crisis literature review

We briefly review a selection of quantitative measures of systemic risk that have recently been

proposed in the literature. In that literature, systemic risk is understood in two different

but related ways. First, the ‘systemic risk contribution’ associated with a large and complex

financial institution corresponds to a negative externality its risk taking has on other firms.

It is the extent to which a firm ‘pollutes the public good’ of financial stability. Given accurate

measures of risk contribution, such an externality may be internalized e.g. through Pigouvian

taxation. Conversely, however, systemic risk is often understood as financial system risk.

We follow this second convention. This notion is analogous to assessing the total size of

the (risk) pie (rather than its composition). It may be operationalized as the time varying

probability of experiencing a systemic event, e.g., the simultaneous failure of a large number

of financial intermediaries.

The literature on financial system risk can be usefully structured by making a distinc-

tion between the different sources of systemic risk. First, financial sector contagion risk is

caused by an initially idiosyncratic problem that sequentially becomes widespread in the

cross-section. Second, shared exposure to financial market shocks and macroeconomic de-

velopments may cause simultaneous problems for financial intermediaries. Third, financial

imbalances such as credit and asset market bubbles that build up gradually over time may

unravel suddenly, with detrimental effects for the system. We review the literature based on

this distinction that is also used in the ECB (2009) report and the lecture of Trichet (2009).

Systemic risk contribution: Acharya, Pedersen, Philippon, and Richardson (2010)

show how each financial institution’s contribution to overall systemic risk can be measured.

The extent to which an institution imposes a negative externality on the system is called

Systemic Expected Shortfall (SES). An institution’s SES increases in its leverage and MES,

Marginal Expected Shortfall. Brownlees and Engle (2010) propose ways to estimate the MES.

Huang, Zhou, and Zhu (2009, 2010) propose a systemic risk measure called the distress
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insurance premium, or DIP, which represents a hypothetical insurance premium against

systemic financial distress. Adrian and Brunnermeier (2009) suggest CoVaR, the Value at

Risk of the financial system conditional on an individual institution being under stress. These

methods are targeted more towards the identification of systemically important institutions.

Their prime source of information is taken from equity markets via equity return data.

Contagion/Cross-sectional perspective: Contagion risk refers to an initially idiosyn-

cratic problem that becomes more widespread in the cross-section. Segoviano and Goodhart

(2009) define banking stability measures based on an entropy-based copula approach that

matches marginal default probability constraints from CDS markets or other sources. Billo,

Getmansky, Lo, and Pelizzon (2010) capture dependence between intermediaries through

principal components analysis and predictive causality tests. Some measures allow to infer

systemic risk contribution as well. Similarly, Hartmann, Straetmans, and de Vries (2005)

derive indicators of the severity of banking system risk from banks’ equity returns using

multivariate extreme value theory. This literature recognizes system risk as largely resulting

from multivariate (tail) dependence.

Macro-financial stress: Macroeconomic shocks matter for financial stability because

they tend to affect all firms in an economy. A macro shock causes an increase in correlated

default losses, with detrimental effects on intermediaries and thus financial stability. Aikman

et al. (2009) propose a ‘Risk Assessment Model for Systemic Institutions’ (RAMSI) to assess

the impact of macroeconomic and financial shocks on both individual banks as well as the

banking system. Giesecke and Kim (2010) define systemic risk as the conditional (time-

varying) probability of failure of a large number of financial institutions, based on a dynamic

hazard rate model with macroeconomic covariates. A related study using a large number of

macroeconomic and financial covariates is Koopman, Lucas, and Schwaab (2011).

Financial imbalances: Financial imbalances such as credit and asset market bubbles

may build up gradually over time. However, they may unravel quite suddenly and abruptly

with detrimental effects on financial markets and intermediaries. Financial imbalances are

not easily characterized and difficult to quantify. Inference on financial misalignments can be

based on observed covariates, such as the private-credit-to-GDP ratio, total-lending-growth,

valuation ratios, changes in property and asset prices, financial system leverage and capital

adequacy, etc., see e.g. Borio and Lowe (2002), Misina and Tkacz (2008), and Barrell, Davis,

Karim, and Liadze (2010). Despite recent progress, these models still display large errors

when predicting financial stress.
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2.2 What is needed for measuring systemic risk?

We identify five core features for an appropriate indicator of systemic risk. We refer to these

features in the next sections where we discuss our econometric framework.

A broader definition of systemic risk: Current tools for financial risk measurement

rely on relatively narrow definitions of a systemic event. A more comprehensive framework

could be based on e.g. the theoretical work of Goodhart, Sunirand, and Tsomocos (2006)

who argue that systemic risk arises from (i) spillover dynamics at the financial industry level,

(ii) shocks to the macroeconomic and financial markets environment, and implicitly (iii) the

potential unraveling of widespread financial imbalances. These sources of risk act on observed

data simultaneously, and should therefore all be part of a diagnostic framework. Otherwise,

incorrect risk attributions may arise. For example, allowing for interconnectedness through

business links but not for shared exposure to common risk factors may spuriously attribute

dependence to links that do not exist.

International or inter-regional focus: Several studies have stressed the importance

of an international perspective, see e.g. Brunnermeier et al. (2009), de Larosiere (2009) and

Volcker et al. (2009). As argued in the introduction, an exclusive focus on domestic con-

ditions is inefficient at best and most likely severely misleading. Consequently, a diagnostic

tool for systemic risk should incorporate information from various regions and industries.

Macroeconomic/financial conditions: The main source of risk in the banking book

is default clustering. Adverse changes in macroeconomic and financial conditions affect

the solvency of all, financial and non-financial, firms in the economy. Observed macro-

financial risk factors are therefore systematic and a source of cross-sectional dependence

between defaults. The resulting default clusters have a first-order impact on intermediaries’

profitability and solvency, and therefore on financial stability. As a result, proxies for time-

varying macro-financial and credit risk conditions should be at the core of a systemic risk

assessment exercise.

Expected default frequencies: Financial institutions rarely default. This is partic-

ularly the case in Europe, where we count 12 financial defaults in the period from 1984Q1

to 2010Q2. Data scarcity poses obvious problems for the modeling of shared financial dis-

tress and financial default dependence. As a consequence, models based on actual default

experience may only give a partial picture of current stress. Other measures of credit risk

can complement historical default information. Such information can be obtained from asset

markets (equities, bonds, credit default swaps) and possibly be augmented with accounting

data. One candidate that integrates information from accounting data (via debt levels) and

forward-looking equity markets (via prices and volatilities) are expected default frequencies
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(EDF) which are based on structural models for credit risk. We include this measure in

our empirical analysis. Other information can be added in the form of credit default swaps

(CDS) spreads. However, the short length of time series of liquid CDS for individual firms

is typically a problem.

Unobserved factors: Financial distress, systemic risk, and the time-varying probabil-

ity of a systemic event are inherently unobserved processes. Their main drivers are also

unobserved: contagion risk at the financial sector level, changes in shared macro-financial

conditions, and financial imbalances such as unobserved large shifts in credit supply. Many

of these unobserved conditions, however, can be inferred (reverse-engineered) from different

sets of observed data. The appropriate econometric tools for extracting unobserved factors

from observed data are collectively known as state space methods.

3 The diagnostic framework

3.1 Mixed-measurement dynamic factor models

We use the mixed-measurement dynamic factor model (MM-DFM) approach as introduced

in Koopman, Lucas, and Schwaab (2010). The approach is based on a state space framework

and incorporates all desired features as stated in Section 2.2. The main idea is to estimate

the composite factors of unobserved systemic risk using a panel of time series observations.

Once the unobserved (or latent) risk factors are estimated, we can construct an accurate

coincident and forward looking measures of systemic risk.

Credit risk is the main risk in the banking book and time-varying credit conditions are

therefore central to systemic risk assessment. Our data sources for assessing credit risk

consist of N macroeconomic and financial market variables xt, default counts yt obtained

from historical information across R regions, and expected default frequencies (EDFs) zt for

Sr financial firms in the rth region for r = 1, . . . , R and for time index t = 1, . . . , T . The

data is denoted by

xt = (x1t, . . . , xNt)
′ , (1)

yt = (y1,1t, . . . , y1,Jt, . . . , yR,1t, . . . , yR,Jt)
′ , (2)

zt = (z1,1t, . . . , z1,S1,t, . . . , zR,1t, . . . , zR,SR,t)
′ , (3)

for t = 1, . . . , T , where xnt represents the value of the nth macroeconomic variable at time

period t, yr,jt is the number of defaults for economic region r, cross-section j and time period

t, and zr,st is the EDF in economic region r of financial s in time period t, for n = 1, . . . , N ,
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t = 1, . . . , T , r = 1, . . . , R, j = 1, . . . , J and s = 1, . . . , Sr. Cross-section j can represent

different categories of firms. For example, j can represent industry sector, rating category,

firm age cohort, or a combination of these. We assume that all variables xt, yt, and zt are

driven by a vector of common dynamic factors, that is ft. However, our panel data may be

unbalanced, such that all variables may not be observed at all time periods.

The model combines normally and non-normally distributed variables. We adopt a stan-

dard conditional independence assumption: conditional on latent factors ft, the measure-

ments (xt, yt, zt) are independent over time and within the cross-section. In our specific case

and conditional on ft, we assume that the elements of xt are normally distributed with their

means as functions of ft. The default counts yr,jt have a binomial distribution with kr,jt

trials and with a probability πr,jt that is a function of ft. The number of trials kr,jt refers

to the number of firms and πr,jt is the probability of default for a specific cross-section j in

region r at time t. The EDFs zt are transformed to represent a frequency for a quarterly

horizon. The corresponding log-odds ratio is defined as z̄r,st = log (zr,st/(1− zr,st)). We

effectively model the log-odds as being a normal variable (conditional on ft). The factor

structure distinguishes macro, regional frailty, and industry-specific effects, denoted by fm
t ,

fd
t , f

i
t , respectively. We therefore have f ′

t = (fm ′
t , fd ′

t , f i ′
t ). The latent factors are the main

input for our systemic risk measures which we discuss below.

In the factor model structure we assume that the macroeconomic and financial variables

in xt are only determined by the macro factors while the other observed variables in yt and

z̄t are determined by all factors,

xnt|fm
t ∼ Gaussian

(
μnt, σ

2
n

)
, (4)

yr,jt|fm
t , fd

t , f
i
t ∼ Binomial (kr,jt, πr,jt) , (5)

z̄r,st|fm
t , fd

t , f
i
t ∼ Gaussian

(
μ̄st, σ̄

2
s

)
. (6)

where the means μnt and μ̄st, and probability πr,jt are functions of ft and where the variances

σ2
n and σ̄2

s are treated as unknown coefficients. The number of firms at risk kr,jt is known

since it is observed from the dataset. The factors in fm
t capture shared business cycle

dynamics in both macro and credit risk data, and are therefore common to xt, yt, and z̄t.

The frailty factors in fd
t are region-specific; they only load on the realized defaults, yr,t,

and the log-odds of EDFs, z̄s,t, from a given region. The frailty and industry factors are

independent of observed macroeconomic and financial data. They capture variation due

to default risk, above and beyond what is already implied by the macro factors fm
t . The

latent factors in f i
t affect firms in the same industry. Such factors may arise as a result

of default dependence through up- and downstream business links, and may capture the
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industry-specific propagation of aggregate shocks. Both fd
t and f i

t help capture a deviation

of default activity from what is implied by macro-financial fundamentals as summarized by

fm
t .

The point-in-time default probabilities πr,jt in (5) vary over time due to the shared

exposure to the underlying risk factors in xt, as summarized by fm
t , to the frailty effects fd

t ,

and to the latent industry specific effects f i
t . We model πr,jt as the logistic transform of an

index function θr,jt,

πr,jt =
(
1 + e−θr,jt

)−1
, (7)

where θr,jt may be interpreted as the log-odds or logit transform of πr,jt. This transform

ensures that time-varying probabilities πr,jt are in the unit interval.

The panel data dynamics in (1) to (3) are captured by time-varying parameters or un-

observed signals which are modeled as functions of the dynamic factors in ft. In particular,

we have

μnt = cn + β′
nf

m
t , (8)

θr,jt = λr,j + β′
r,jf

m
t + γ′

r,jf
d
t + δ′r,jf

i
t , (9)

μ̄r,st = c̄r,s + β̄′
r,sf

m
t + γ̄′

r,sf
d
t + δ̄′r,sf

i
t , (10)

where λr,j, cn, and c̄r,s are fixed effects, and risk factor sensitivities β, γ, and δ refer to the

loadings on macro factors, frailty factors, and industry-specific factors, respectively. Fixed

effects and factor loadings may differ across firms and regions. Since the cross-section is high-

dimensional, we follow Koopman and Lucas (2008) in reducing the number of parameters

by imposing the following additive structure,

χ̄r,j = χ0 + χ1,dj + χ2,sj + χ3,rj , for χ̄ = λ, β, γ, δ, β̄, γ̄, δ̄ (11)

where χ0 represents the baseline effect, χ1,d is the industry-specific deviation, χ2,s is the

deviation related to rating group, and χ3,r is the deviation related to regional effects. Since

we assume that the baseline effect χ0 is nonzero, some of the other coefficients need to be

subject to zero constraints to ensure identification. The specification in (11) is parsimonious

yet sufficiently flexible to accommodate heterogeneity across regions and industries.

The latent factors are stacked into the vector ft =
(
fm′
t , fd′

t , f
i′
t

)′
. We assume that the

elements of ft follow independent autoregressive dynamics. In our study, we have

ft = Φft−1 + ηt, ηt ∼ NID (0,Ση) , (12)

where the coefficient matrix Φ and covariance matrix Ση are assumed diagonal. Extensions to

more complex dynamic structures are straightforward exercises. The autoregressive structure
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in (12), however, already allows sufficient stickiness in the components of ft. For example,

it allows the macroeconomic factors fm
t to evolve slowly over time and to capture business

cycle dynamics in macro and default data. Similarly, the credit climate and industry default

conditions are modeled as persistent processes for fd
t and f i

t , respectively. The m× 1 distur-

bance vector ηt is serially uncorrelated. To ensure the identification of the factor loadings,

we impose Ση = I − ΦΦ′. It implies that E[ft] = 0, Var[ft] = I, and Cov[ft, ft−h] = Φh, for

h = 1, 2, . . .. As a result, the loading coefficients βr,j, γr,j, and δr,j in (9) can be interpreted

as risk factor volatilities (standard deviations) for the firms in cross section (r, j). It also

leads us to the initial condition f1 ∼ N(0,Σ0) and completes the specification of the factor

process.

3.2 Parameter and risk factor estimation

The mixed measurement dynamic factor model presented in the previous section is an ex-

tension of the non-Gaussian measurement state space models as discussed in Shephard and

Pitt (1997) and Durbin and Koopman (1997) to modeling observations from different fam-

ilies of parametric distributions. The model relies on a parameter vector that contains the

coefficients in Φ, λ, β, γ, δ, β̄, γ̄, and δ̄. This parameter vector is estimated by the method of

simulated maximum likelihood. Since our dynamic factor model partly relies on the binomial

density, the likelihood function is not available in a convenient analytical form. We therefore

need to evaluate the high-dimensional integral of the likelihood function directly. Numerical

integration is not computationally feasible for such high-dimensional cases and, therefore,

we rely on Monte Carlo simulation methods for evaluating the likelihood function. As the

same random numbers can be used for likelihood evaluations for different parameter vectors,

the likelihood is a smooth function of the parameter vector. Hence we can maximimize the

Monte Carlo likelihood function directly by means of a numerical optimization method. We

refer to the Appendix A1 for details on our simulation based estimation procedure for mixed

measurement data.

An advantage of using state space methods is the convenient treatment of missing values

in the dataset. Missing values can have a strong presence in the panels (1) to (3). For

example, some macroeconomic variables in xt may not be available at the beginning of the

sample. Also, default data yr,jt is not available (missing) if there are no corresponding firms

at risk, that is kr,jt = 0. We refer to the Appendix A2 for the treatment of the many missing

values in our setup. Clearly, state space methods provide a natural framework to account

for missing entries in the data without any adjustments to the model.

The cross-sectional dimension in the panels (1) to (3) can become very large. High-
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dimensional measurements can lead to computational problems for any method of estima-

tion. Jungbacker and Koopman (2008) show that state space methods for dynamic factor

models with high-dimensional measurements and a low-dimensional state vector become

computationally feasible when we transform the panel dataset to a time series of observation

vectors that have the same dimension as the factors. The transformation results are only

justified for the linear Gaussian measurement model. However, many importance sampling

computations as detailed in Appendix A1 rely on an approximating linear Gaussian mea-

surement equation. Appendix A3 demonstrates that we can adapt the results of Jungbacker

and Koopman (2008) to nonlinear models for partly non-Gaussian data. These methods are

helpful regarding the feasibility of the analyses in our empirical study.

3.3 Thermometers and a forward looking indicator

Using the mixed measurement model set-up, we can construct indicators of financial distress

for a specific region or combination of regions. Being based on (8) to (10), such indicators

automatically integrate the effects of macro, frailty, and industry effects. We consider five

indicators, four coincident measures (‘thermometers’), and one forward-looking early warning

indicator. Thermometers are designed to display the current ‘heat’ in the financial system.

Our early warning indicator captures imbalances that are currently building up and may

pose a risk to the system at a later stage. Both thermometers and early warning indicators

are essential tools to monitor system risk in a forward looking policy context.

The first thermometer is the model-implied financial sector failure rate. The time-varying

default probability πr,jt in (7) can be interpreted as the fraction of financial intermediaries

that are expected to fail over the next three months. We estimate this quantity by aggre-

gating implied rates from the bottom up across banks and financial non-banks. Naturally,

high failure rates imply high levels of common financial distress, and thus a higher risk of

adverse real economy effects through financial failure.

A second thermometer is the time-varying probability of simultaneous failure of a large

number of financial intermediaries, as suggested in Giesecke and Kim (2010). Such inter-

mediaries may be depository institutions, but also insurers, re-insurers, and broker/dealers

that provide intermediation services. The latter three categories are part of the ‘shadow’

banking system. Due to the conditional independence assumption, the joint probability of

failure can easily be constructed from the binomial cumulative distribution function and the

time-varying financial sector failure rates.

A third indicator is based on the default signals θr,jt in (9). The signals θr,jt consist

of two terms, θr,jt = [λr,j] +
[
β′
r,jf

m
t + γ′

r,jf
d
t + δ′r,jf

i
t

]
, where the fixed effects λr,j pin down
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the through-the-cycle log-odds of the default rate, and the systematic factors fm
t , fd

t , and f i
t

jointly determine the point-in-time default conditions. The signals θr,jt are Gaussian since all

risk factors in ft are Gaussian. We can therefore standardize these signals to unconditionally

standard normally distributed values zθr,jt,

zθr,jt = (θr,jt − λr,j) /
√

Var(θr,jt),

where Var(θr,jt) = β′
r,jβr,j + γ′

r,jγr,j + δ′r,jδr,j ≥ 0 is the unconditional variance of θr,jt. Our

systematic credit risk indicator (SRI) for firms of type j in region r at time t is given by

SRIr,jt = Φ̄
(
zθr,jt

)
, (13)

where Φ̄(z) is the standard normal cumulative distribution function. Values of SRIr,jt lie

between 0 and 1 by construction with uniform (unconditional) probability. Values below

0.5 indicate less-than-average common default stress, while values above this value suggest

above-average stress. Values below 20%, say, are exceptionally benign, and values above

80% are indicative of substantial systematic stress. Our measure of financial system risk is

obtained when (13) is applied to model-implied failure rates for financial firms in a given

region.

A fourth indicator of financial system risk is the expected number of financial defaults

over the next year conditional of at least one financial default occurring,

BSIr,j = kr,jtπr,jt/ (1− Binomial (0; kr,jt, πr,jt)) . (14)

This Banking Stability Index has been proposed by Huang (1992), and subsequently used by

e.g. Hartmann et al. (2005) and Segoviano and Goodhart (2009). Naturally, a high expected

number of financial defaults indicates adverse financial conditions.

Finally, the indicator (13) can be modified to only capture frailty and industry effects.

This yields a signal whether local default experience in a particular industry and region is

unexpectedly different from what would be expected based on macro fundamentals fm
t . This

indicator is our ‘credit risk deviations’ early warning indicator,

CBIr,j = |(γ′
r,jf

d
t + δ′r,jf

i
t )/

√
γ′
r,jγr,j + δ′r,jδr,j|. (15)

Section 5 below reports and discusses the indicator values from this section. In particular,

we demonstrate that major deviations of credit risk conditions from what is implied by stan-

dard macro-financial fundamentals have in the past preceded financial and macroeconomic

distress.
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Table 1: International macroeconomic time series data
We list the variables contained in the macroeconomic panel. The time series data enters the analysis as

yearly (yoy) growth rates. The sample is from 1984Q1 to 2010Q4.

Region Summary of time series in category Total no

(i) United States Real GDP
Industrial Production Index
Inflation (implicit GDP price deflator)
Dow Jones Industrials Share Price Index
Unemployment Rate, 16 years and older
U.S. Treasury Bond Yield, 20 years
U.S. T-Bill Yield, 3 months
ISM Purchasing Managers Index

8

(ii) E.U. countries Euro Area (EA16) Real GDP
Euro Area (EA16) Industrial Production Index
Euro Area (EA16) Inflation (Harmonized CPI)
Euro Share Price Index, Datastram
Euro Area (EA16) Unemployment Rate
Euro Area (EA16) Gov’t Bond Yield, 10 years
Euro Interbank Offered Rate (Eruibor), 3 months
Euro Area (EA16) Industrial Confidence Indicator

8

16

4 Data

We use data from three main sources in the empirical study below. First, a panel of macroe-

conomic and financial time series data is taken from Datastream with the aim to capture

international business cycle and financial market conditions. Macroeconomic data is con-

sidered for the U.S. and Europe. Table 1 provides a listing. The macro variables enter the

analysis as annual growth rates from 1984Q1 to 2010Q4.

A second dataset is constructed from default data from Moody’s. The database contains

rating transition histories and default dates for all rated firms (worldwide) from 1984Q1

to 2010Q4. From this data, we construct quarterly values for yr,jt and kr,jt in (5). When

counting exposures kr,jt and corresponding defaults yr,jt, a previous rating withdrawal is

ignored if it is followed by a later default. If there are multiple defaults per firm, we consider

only the first event. In addition, defaults that are due to a parent-subsidiary relationship

are excluded. Such defaults typically share the same default date, resolution date, and

legal bankruptcy date in the database. Inspection of the default history (text) and parent
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Figure 1: Actual default experience
We present time series plots of (a) the total default counts

∑
j yr,jt aggregated to a univariate series, (b) the

total number of firms
∑

j kr,jt in the database, and (c) aggregate default fractions
∑

j yr,jt /
∑

j kr,jt over

time. We distinguish different economic regions: the U.S., the EU-27 area, and the respective rest of the

world.
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number confirms the exclusion of these cases. We use the industry specification to distinguish

between financial and non-financial firms.

Table 2 provides an overview of the international exposure and default count data. Cor-

porate data is most abundant for the U.S., with E.U. countries second. Most firms are either

from the industrial or financial sector. The bottom of Table 2 suggests that about 60% of

all worldwide ratings are investment grade. European and Asian firms are more likely to be

rated investment grade, with shares of 83% and 75%, respectively. Figure 1 plots aggregate

default counts, exposures, and observed fractions over time for each economic region.

Table 2 reveals that financial intermediaries rarely default, in particular in Europe. This is

an obvious problem for inference on time-varying risk conditions. For financials, we therefore

add data from a third dataset. Data on expected default frequencies for the 20 largest (based

on 2008Q4 market cap) financial firms in the U.S. , EU-27, and respective rest of the world,
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Table 2: International default and exposure counts
The table consists of three panels. The top panel presents default counts disaggregated across industry

sectors and economic region. The middle panel presents the total number of firms counted in the database.

The bottom panel presents the cross section of firms at risk (‘exposures’) at point-in-time 2008Q1 according

to rating group and economic region.

No Defaults U.S. Europe Other Sum
Bank 41 8 22 71
Fin non-Bank 84 4 14 102
Transport 90 17 8 115
Media 127 2 2 131
Leisure 97 9 15 121
Utilities 24 2 5 31
Energy 79 0 7 86
Industrial 435 16 53 504
Technology 177 38 24 239
Retail 94 1 4 99
Cons Goods 120 8 17 145
Misc 31 0 16 47
Sum 1399 105 187 1691

Firms U.S. Europe Other Sum
Bank 478 603 591 1672
Fin non-Bank 966 371 500 1837
Transport 336 70 72 478
Media 460 33 34 527
Leisure 434 73 59 566
Utilities 597 149 138 884
Energy 512 84 152 748
Industrial 1920 419 497 2836
Technology 941 204 220 1365
Retail 311 32 46 389
Cons Goods 591 110 112 813
Misc 250 151 258 659
Sum 7796 2299 2679 12774

Firms, 2008Q1 U.S. Europe Other Sum
Aaa 50 84 69 203
Aa 141 355 250 746
A 415 403 337 1155
Baa 575 229 291 1095
Ba 278 72 177 527
B 673 96 183 952
Ca-C 379 58 56 493
Sum 2511 1297 1363 5171
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Figure 2: Expected default frequencies of 60 global financials
The top panel reports the standardized log-odds from EDF data for the largest 60 global financial firms

(banks and financial non-banks). The sample consists of the largest 20 U.S., EU-27, and rest of the world

financial firms, respectively. The raw data sample is from 1990Q1 to 2010Q4, and contains missing values.

Missing values are inferred using the EM algorithm of Stock and Watson (2002). The bottom graph plots

the respective first principal components from the U.S. , EU-27, and the rest of the world sub-sample.
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is taken from Moody’s KMV CreditEdge. These 3 × 20 = 60 expected default frequencies

are based on a firm value model that takes equity values and balance sheet information as

inputs. We use it to augment our relatively sparse data on actual defaults for financial firms.

Figure 2 plots the panel of EDF data, after transformation to a quarterly scale and log-odds

ratio. The principal components and reported eigenvalues in the bottom panel indicate

substantial common variation across institutions and regions that can be summarized in a

factor structure.

5 Empirical results on system risk

This section presents the main empirical findings. Section 5.1 comments briefly on the main

sources of financial default clustering. Sections 5.2 and 5.3 present our thermometers and

forward looking indicator for systemic risk assessment.

5.1 Why do financial defaults cluster?

Observed credit risk data reveals that aggregate financial sector failure rates are up to ten

times higher in bad times than in good times. This is striking. Why do financial failures

cluster so dramatically over time? Which sources of risk are important, and to what extent?

The answer to these questions is important for constructing effective coincident and forward

looking risk indicators.

Table 3 presents the parameter estimates for model specification (1) to (12). The fixed

effects and factor loadings in the signal equation (9) satisfy the additive structure (11).

Coefficients λ in the left column combine to the baseline failure rates. The middle and right-

hand columns present estimates for loadings β, γ, and δ that pertain to macro, frailty, and

industry factors, respectively.

The parameter estimates indicate that macro, frailty, and industry effects are all impor-

tant for international credit risk conditions. Defaults from all regions and industries load

significantly on common factors from global macro-financial data. This by itself already im-

plies a considerable degree of default clustering. In general, however, common variation with

macro data is not sufficient. Frailty effects are found to be important in all regions. The

financial industry-specific factor loads significantly on data from all regions, which indicates

pronounced shared dynamics across regions.

Table 4 attributes the variation in the (Gaussian) log-odds of financial sector failure

rates to three primary risk drivers, i.e., changes in macro-financial conditions, excess default

clustering for all firms (financial and non-financial), and financial sector-specific dynamics.
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Table 3: Parameter estimates
We report the maximum likelihood estimates of selected coefficients in the specification of the log-odds ratio

(9) with parameterization (11) for λ and β. Coefficients λ combine to fixed effects, or baseline failure rates.

Factor loadings β, γ, and δ refer to macro, frailty, and industry risk factors, respectively. The estimation

sample is from 1984Q1 to 2010Q4.

Intercepts λj , Loadings fm
t Loadings fd

t , f
i
t

par val t-val
λ0 -5.30 11.56

λ1,fin -1.09 5.09
λ2,EU -1.64 4.06
λ2,RoW -1.06 4.02

par val t-val
β1,0 -0.18 2.92
β1,1,fin 0.20 2.15
β1,2,EU 0.03 0.46
β1,2,RoW -0.37 3.89

β2,0 0.12 2.04
β2,1,fin 0.10 1.13
β2,2,EU 0.06 1.00
β2,2,RoW -0.15 1.93

β3,0 0.10 1.80
β3,1,fin -0.12 1.71
β3,2,EU -0.06 1.00
β3,2,RoW 0.10 1.29

β4,0 0.58 7.64
β4,1,fin -0.23 2.16
β4,2,EU -0.07 0.83
β4,2,RoW 0.16 1.48

par val t-val
γUS,0 0.12 1.86
γUS,1,fin 0.14 1.72
γEU,0 -0.66 3.28
γEU,1,fin 0.88 4.06
γRoW,0 0.30 1.31
γRoW,1,fin 0.61 2.74

δUS 0.42 5.68
δEU 0.53 6.71
δRoW 0.78 6.78

Table 4: Why do financial defaults cluster?
We report the results of a variance decomposition of transformed (Gaussian, log-odds) failure rates for

financial firms in three economic regions. The unconditional variance is attributed to three latent sources of

financial distress. Each source of distress is captured by a corresponding set of latent factors and associated

risk factor standard deviations. Specifically, smr,j = β′
r,jβr,j/Var(θr,jt), s

d
r,j = γ′

r,jγr,j/Var(θr,jt), and sir,j =

δ′r,jδr,j/Var(θr,jt), where Var(θr,jt) = β′
r,jβr,j + γ′

r,jγr,j + δ′r,jδr,j ≥ 0, and j refers to financial firms. The

estimation sample is from 1984Q1 to 2010Q4.

Changes in observed
macro-financial conditions

smr,fin

Latent default-
specific dynamics

sdr,fin

Latent financial
sector dynamics

sir,fin
U.S. 44.7% 15.9% 42.4%
EU-27 33.2% 9.1% 57.7%
Rest of world 35.9% 9.0% 55.1%
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These drivers are associated with the vectors of latent factors fm
t , fd

t , and f i
t , respectively.

The relative importance of each source of variation can be inferred from the estimated risk

factor loadings. Given that each risk factor is unconditional standard normal, the factor

loading is the estimated risk factor volatility (standard deviation) by construction.

Table 4 indicates that shocks to macroeconomic and financial conditions are an important

source of financial distress. Historically, financial sector stress and business cycle downturns

have tended to occur at roughly the same time. This is intuitive, since financial stress may

have negative real consequences, and vice versa, with significant feedback and amplifica-

tion effects. Timing effects are only captured indirectly in this decomposition, as current

estimates of fm
t capture a rotated version of current and lagged structural driving forces,

see Stock and Watson (2002) for a discussion and intuition from the linear Gaussian con-

text. Table 4 further suggests that financial industry specific dynamics are an important

additional source of joint financial failure. As a result, financial sector risk dynamics can

differ substantially from what is implied by shared exposure to observed macro-financial

covariates. We conclude that all three sources of risk should all be accounted for.

5.2 Thermometers: coincident indicators of financial distress

This section presents the thermometers that are constructed from the estimated risk factors

and loading parameters. Figure 3 plots a model-implied failure rate for a large cross section

of E.U. and U.S. financial firms. The failure rate is the share of overall intermediaries that

can be expected to fail over the next three months. The aggregate rates are obtained by

aggregating from the bottom up across approximately 450 U.S. and 400 E.U. area financial

firms, respectively. As a result, the reported failure rates take into account a significant

part of the parallel banking system, i.e., insurers, real estate firms, and other rated non-

bank financial firms that play a role in the intermediation process. Figure 3 also compares

the aggregate failure rates (solid lines) with the mean expected default probability (from

Moody’s KMV) from the largest twenty financial firms (according to 2008Q4 market cap;

dashed lines) in the U.S. (left panel) and E.U. area (right panel), respectively. The financial

distress in the U.S. during the recession years of 1991, 2001, and 2007-10 are visible from the

left panel. However, a recession is not necessary for such stress. An example is the period in

the late 1980s in the U.S., when common stress is pronounced while the economy is not in

recession. Finally, the financial sector failure rate is different and almost always higher than

what is suggested by an analysis of the average EDFs for the twenty largest - and highly

rated - large and complex banking groups in each region.

As of 2010Q4, both the mean EDF and the model-implied rate suggest high levels of
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Figure 3: Implied financial sector failure rate
We plot the model-implied default failure rate for financial sector firms. The sector failure rate is obtained

by aggregating across banks and financial non-banks from the bottom up. The estimation sample is 1984Q1

to 2010Q4.
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common stress for U.S. and E.U. financial firms. For U.S. financials, the quarterly failure

rates range from slightly above zero in good times to approximately 1% at the peak of the

2008 crisis. Model-implied stress for European intermediaries is lower than for U.S. financials.

This is partly due to their higher credit quality on average, see Table 2.

Systemic risk is necessarily a multivariate concept, involving a system of banks and fi-

nancial non-banks. The notion of systemic risk is now made operational as the risk of

experiencing a simultaneous failure of a large number of financial institutions. Conceptually,

simultaneous bank failures are analogous to disasters such as earthquakes and tsunamis -

unlikely events during most times, but with an asymmetrically large and potentially devas-

tating impact if the risk materializes.

The top panels in Figure 4 plot the probability of at least k% of financial firms failing

over a one year horizon (vertical axis), as a decreasing function of k, over time from 1984Q1

to 2010Q4 (horizontal axis). The left and right panels refer to the U.S. and E.U., respec-

tively. The bottom panels cut the three-dimensional plots into various slices along the time

dimension, at 0.1%, 0.5%, 1%, and 2% of overall financial sector firms. The figure reveals

that, for example, in the E.U. area in 2010Q4, the probability of failure of at least 1% of

financial sector firms (e.g., at least four firms of average size out of four hundred firms), at

coincident levels of stress, is around 30%. This is a substantial risk of simultaneous failings.

Figure 5 plots the expected number of financial defaults over a one year horizon condi-

tional on at least one firm failing over that time period, see (14). The number of firms is

fixed at 100. During the peak of the financial crisis, about three from one hundred U.S.
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Figure 4: Probability of simultaneous financial failures
We report the probability of a systemic event, defined as the simultaneous failure of k% or more financial

firms. The horizontal axis measures time from 1984Q1 to 2010Q4. The vertical axis measures the time-

varying probability as a decreasing function of k. The left and right panel refers to the U.S. and the E.U.

area, respectively.
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Figure 5: Banking stability index
We plot indicator (14), i.e., the expected number of financial defaults over a one year horizon conditional

on at least one default occurring. Firms at risk are held fixed at 100. Financial firms comprise banks and

financial non-banks.
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financials are expected to fail over a one year horizon conditional on one firm going down.

No data on financial sector counterparty exposures is used for this estimate.1

Finally, Figure 6 plots financial distress based on the indicator (13). The probability inte-

gral transformation in (13) maps common financial distress into a uniform random variable,

such that its percentiles can be read off the transformed y-axis. We refer to the best and

worst 20% of times as relative ‘exuberance’ and ‘crisis’, respectively. Financial distress is

virtually absent during the late-1990s and mid-2000s. The late 1990s are associated with the

Clinton-Greenspan policy mix of low interest rates and low budget deficits, and correspond-

ing favorable macroeconomic conditions. The mid-2000s are characterized by exceptionally

low interest rates and easy credit access for U.S. firms. We note that bubbles may have

started to build up during each of these times (the dot.com and a lending bubble, respec-

tively). The role of a macro-prudential policy maker may then be to communicate such

developments, and to consider taking away the punch bowl from exuberant market partici-

pants. Conversely, support measures may be justified during times of crisis. The indicator

(13) helps in assessing the relative severity of stress.

1The newly founded U.S. Office of Financial Research (OFR) is mandated to make an important step in
obtaining such data, and has a strong backing through the Dodd Frank act. The OFR sets data standards
and has legal subpoena power to obtain information from financial institutions. As of now and the near
future, however, counterparty exposures are simply not observed.



28
ECB
Working Paper Series No 1327
April 2011

Figure 6: Scaled financial distress
The figure plots the risk indicator (13) based on the model-implied financial sector failure rates. A percentile-

to-percentile transformation implies that relative levels of implied distress can be read off the y-axis. The

best and worst 20% of times are referred to as times of exuberance and crisis, respectively.
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5.3 Early warning signals

We argue that large frailty effects at a given time can serve as a warning signal for a macro-

prudential policy maker. Roughly speaking, frailty effects capture the difference between

current point-in-time default conditions vis-a-vis their benchmark values based on observable

macro-financial covariates. Such differences can arise due to e.g. unobserved shifts in credit

supply, changes in (soft) lending standards, and financial imbalances that are difficult to

quantify. The main idea is that a comparison of credit and macro-financial conditions yields

a useful early warning indicator for financial stability. It can be seen as related to the notion

of tracking credit quantities over time, such as the private credit to GDP ratio, which is in

line with the relevant early warning literature, see for example Borio and Lowe (2002), Misina

and Tkacz (2008), Borio and Drehmann (2009), Alessi and Detken (2009), and Barrell, Davis,

Karim, and Liadze (2010). The main difference is that we suggest to compare credit risk

instead of credit quantities to macro-financial conditions.

Past experiences of financial fragility, financial booms and financial crises, suggests that

problems rarely appear at the same place in the financial system twice in a row. The

main commonality between the different events that turned into a fully fledged financial

crisis is that they were not expected by market participants and regulators. Goodhart and

Persaud (2008) point out that if market prices for assets or credit were good at predicting

crashes, crises would not happen. Similarly, Abreu and Brunnermeier (2003) explain how

asset market bubbles can build up over time despite the presence of rational arbitrageurs.

Mispricing can persist in particular during late stages of an asset or lending bubble. These
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Figure 7: Latent factor estimates
The left panel reports the conditional mean estimates of three region-specific frailty factors. The right panel

plots the financial sector industry factor that is common to financial firms in all regions. The approximate

standard error bands in the right panel are at a 95% confidence level.
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findings suggest that (i) building early warning signals solely based on market prices has

obvious drawbacks, and that (ii) it may be useful to look for structure in the ‘unexpected’,

or leftover variation.

Our warning signals build on Duffie, Eckner, Horel, and Saita (2009), Azizpour, Giesecke,

and Schwenkler (2010), and Koopman, Lucas, and Schwaab (2011) who find substantial

evidence for a dynamic unobserved risk factor driving default for U.S. firms above and

beyond what is implied by observed macro-financial covariates and other information. We

interpret the frailty factor as largely capturing unobserved variation in credit supply, or

changes in the ease of credit access. We rely on two pieces of evidence for interpretation,

as reported in Koopman, Lucas, and Schwaab (2011). First, frailty tends to load more

heavily on financially weaker - and thus more credit constrained - firms. This appears to

hold in general, and in particular during the years leading up to the financial crisis. Second,

our frailty estimates are highly correlated with ex post reported lending standards, such

as the ones obtained from the Senior Loan Officer Survey (SLO) and for example reported

in Maddaloni and Peydro (2010). These findings suggest that frailty, among other effects,

captures outward shifts in (unobserved) credit supply. Changes in the ease of credit access

surely affect credit risk conditions: it is hard to default if one is drowning in credit. As

a result, systematic default risk (‘the default cycle’) can decouple from what is implied by

macro-financial conditions (‘the business cycle’).

The left panel of Figure 7 presents the estimated frailty factors for the U.S., EU-27, and

the rest of the world. For the U.S., frailty effects have been pronounced during bad times,
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Figure 8: ‘Credit risk deviations’ early warning indicator
We plot deviations of credit risk conditions (here for financial firms) from macro-financial fundamentals as

captured by the indicator (15). Shaded areas correspond to NBER U.S. recession periods. The indicator

is constructed as the absolute value of a standard normal variable. The horizontal line is drawn at one

standard deviation.
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such as the savings and loan crisis in the U.S. in the late 1980s, leading up to the 1991

recession. They have also been pronounced in exceptionally good times, such as the years

2005-07 leading up to the recent financial crisis. In these years, default conditions are much

more benign than would be expected from observed macro and financial data. At these

times, frailty effects are large in absolute value, and significantly different from zero.

Figure 8 plots our ”credit risk deviations” early warning indicator (15). The indicator

combines estimated frailty and financial sector industry effects into an early warning signal.

The indicator captures the extent to which local stress in a given industry (the financial

industry in this case) differs from that which macro-financial fundamentals would suggest.

The figure compares estimated deviations in U.S. , E.U. area, and respective rest of the

world. Shaded areas correspond to U.S. NBER recession times. The graph is based on

filtered risk factor estimates.

The indicator (15) is the absolute value of a standard normal covariate by construction.

Deviations larger than one standard deviation in all tracked regions may constitute a warning

signal. The figure demonstrates in particular that a significant and persistent decoupling of

risk conditions from fundamentals has preceded the financial crisis and recession of 2007-

2009. Here, risk conditions were significantly below what was suggested by fundamentals.

The indicator may also signal risk conditions that are considerably worse than expected. This

is the case during the years 1988-90 leading up to the 1991 recession, and during 2010Q3-Q4.

For European financials in 2010, this may reflect the fact that the macro fundamentals do
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not take into account Euro Area sovereign default risk conditions, which are then captured

by the latent industry factor.

We conclude that a monitoring of time-varying credit risk and macro-fundamental con-

ditions is of key importance for making macro-prudential policy. Our mixed-measurement

dynamic factor model is a versatile tool to make financial stability assessments operational.

6 Conclusion

We proposed a novel diagnostic framework for financial systemic risk assessment based on a

mixed-measurement dynamic factor model. We combined the risk factor and parameter es-

timates into new and straightforward coincident and forward looking indicators of financial

system risk. Conceptually, our factor structure allows us to address computational chal-

lenges associated with a large cross-sectional dimension of firms more easily than alternative

frameworks for financial stability assessments. The new method easily allows one to combine

different sets of panel data in a single integrated framework. In our empirical analysis, we

found that a decoupling of credit risk from macro-financial fundamentals may serve as an

early warning signal for a macro-prudential policy maker.

Appendix A1: estimation via importance sampling

The observation density function of y = (x′
1, y

′
1, z

′
1 . . . , x

′
T , y

′
T , z

′
T )

′
can be expressed by the joint density of

y and f = (f ′
1, . . . , f

′
T )

′
where f is integrated out, that is

p(y;ψ) =

∫
p(y, f ;ψ)df =

∫
p(y|f ;ψ)p(f ;ψ)df, (A.16)

where p(y|f ;ψ) is the density of y conditional on f and p(f ;ψ) is the density of f . Importance sampling

refers to the Monte Carlo estimation of p(y;ψ) by sampling f from a Gaussian importance density g(f |y;ψ).
We can express the observation density function p(y;ψ) by

p(y;ψ) =

∫
p(y, f ;ψ)

g(f |y;ψ) g(f |y;ψ)df = g(y;ψ)

∫
p(y|f ;ψ)
g(y|f ;ψ)g(f |y;ψ)df. (A.17)

Since f is from a Gaussian density, we have g(f ;ψ) = p(f ;ψ) and g(y;ψ) = g(y, f ;ψ) / g(f |y;ψ). In case

g(f |y;ψ) is close to p(f |y;ψ) and in case simulation from g(f |y;ψ) is feasible, the Monte Carlo estimator

p̃(y;ψ) = g(y;ψ)M−1
M∑
k=1

p(y|f (k);ψ)

g(y|f (k);ψ)
, f (k) ∼ g(f |y;ψ), (A.18)

is numerically efficient, see Kloek and van Dijk (1978), Geweke (1989) and Durbin and Koopman (2001).

For a practical implementation, the importance density g(f |y;ψ) can be based on the linear Gaussian

approximating model

yjt = μjt + θjt + εjt, εjt ∼ N(0, σ2
jt), (A.19)
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where mean correction μjt and variance σ2
jt are determined in such a way that g(f |y;ψ) is sufficiently close

to p(f |y;ψ). It is argued by Shephard and Pitt (1997) and Durbin and Koopman (1997) that μjt and σjt

can be uniquely chosen such that the modes of p(f |y;ψ) and g(f |y;ψ) with respect to f are equal, for a

given value of ψ.

To simulate values from the importance density g(f |y;ψ), the simulation smoothing method of Durbin

and Koopman (2002) can be applied to the approximating model (A.19). For a set of M draws of g(f |y;ψ),
the evaluation of (A.18) relies on the computation of p(y|f ;ψ), g(y|f ;ψ) and g(y;ψ). Density p(y|f ;ψ) is

based on (5) and (4), density g(y|f ;ψ) is based on the Gaussian density for yjt − μjt − θjt ∼ N(0, σ2
jt), that

is (A.19), and g(y;ψ) can be computed by the Kalman filter applied to (A.19), see Durbin and Koopman

(2001).

The likelihood function can be evaluated for any value of ψ. By keeping the random numbers fixed, we

maximize the likelihood estimator (A.18) with respect to ψ by a numerical optimisation method. Further-

more, we can estimate the latent factors ft via importance sampling. It can be shown that

E(f |y;ψ) =
∫

f · p(f |y;ψ)df =

∫
f · w(y, f ;ψ)g(f |y;ψ)df∫
w(y, f ;ψ)g(f |y;ψ)df ,

where w(y, f ;ψ) = p(y|f ;ψ)/g(y|f ;ψ). The estimation of f̃t = E(f |y;ψ) and its standard error st via

importance sampling can be achieved by

f̃ =
M∑
k=1

wk · f (k)

/
M∑
k=1

wk, s2t =

(
M∑
k=1

wk · (f (k)
t )2

/
M∑
k=1

wk

)
− f̃2

t ,

with wk = p(y|f (k);ψ)/g(y|f (k);ψ), f (k) ∼ g(f |y;ψ), and f̃t is the tth element of f̃ .

Appendix A2: treatment of missing values

When missing values are present in the data vector y = (y′1, . . . , y
′
T )

′, some care must be taken when

computing the importance sample weights wk = p(y|f (k);ψ)/g(y|f (k);ψ), f (k) ∼ g(f |y;ψ). The mode

estimates of the corresponding signals θ = (θ′1, . . . , θ
′
T )

′ and factors f = (f ′
1, . . . , f

′
T )

′ are available even when

we have missings. Some bookkeeping is required to evaluate p(y|f ;ψ) and g(ỹ|f ;ψ) at the corresponding

values of f , or θ. Forecasts f̃T+h, for h = 1, 2, . . . , H, can be obtained by treating future observations

yT+1, . . . , yt+H as missing, and by applying the estimation and signal extraction techniques of Section 6 to

data (y0, . . . , yT+H).

Appendix A3: collapsing observations

A recent result in Jungbacker and Koopman (2008) states that it is possible to collapse a [N × 1] vector of

(Gaussian) observations yt into a vector of transformed observations ylt of lower dimension m < N without

compromising the information required to estimate factors ft via the Kalman Filter and Smoother (KFS). We

here adapt their argument to a nonlinear mixed-measurement setting. We focus on collapsing the artificial

Gaussian data ỹt with associated covariance matrices H̃t, see (A.19) and (12).

Consider a linear approximating model for transformed data ỹ∗t = Atỹt, for a sequence of invertible
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matrices At, for t = 1, . . . , T . The transformed observations are given by

ỹ∗t =

(
ỹlt

ỹht

)
, with ỹlt = Al

tỹt and ỹht = Ah
t ỹt,

where time-varying projection matrices are partitioned as At =
[
Al′

t : Ah′
t

]′
. We require (i) matrices At to be

of full rank to prevent the loss of information in each rotation, (ii) Ah
t H̃tA

l′
t = 0 to ensure that observations

ỹlt and ỹht are independent, and (iii) Ah
t Zt = 0 to ensure that yht does not depend on f . Several such matrices

Al
t that fulfill these conditions can be found. A convenient choice is presented below. Matrices Ah

t can be

constructed from Al
t, but are not necessary for computing smoothed signal and factor estimates.

Given matrices At, a convenient model for transformed observations ỹ∗t is of the form

ỹlt = Al
tθt + elt,

ỹht = eht
,

(
elt

eht

)
∼ NIID

(
0,

[
H̃ l

t 0

0 H̃h
t

])
,

where H̃ l
t = Al

tH̃tA
l′
t , H̃

h
t = Ah

t H̃tA
h′
t , θt = Zft, and Z contains the factor loadings. Clearly, the [N −m]

dimensional vector ỹht contains no information about ft. We can speed up computations involving the KFS

recursions as follows.

Algorithm : Consider (approximating) Gaussian data ỹt with time-varying covariance matrices H̃t, and

N > m. To compute smoothed factors ft and signals θt,

1. construct, at each time t = 1, . . . , T , a matrix Al
t = CtZ

′H̃−1
t , with Ct such that C ′

tCt =
(
Z ′H̃−1

t Z
)−1

and Ct upper triangular. Collapse observations as ỹlt = Al
tỹt.

2. apply the KFS to the [m × 1] low-dimensional vector ỹlt with time-varying factor loadings C−1′
t and

H̃ l
t = Im.

This approach gives the same factor and signal estimates as when the KFS recursions are applied to the

[N × 1] dimensional system for ỹt with factor loadings Z and covariances H̃t.

A derivation is provided in Jungbacker and Koopman (2008, Illustration 4).
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