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Abstract 

Severe financial turbulences are driven by high impact and low probability events that are 

the characteristic hallmarks of systemic financial stress. These unlikely adverse events arise 

from the extreme tail of a probability distribution and are therefore very poorly captured by 

traditional econometric models that rely on the assumption of normality. In order to address 

the problem of extreme tail events, we adopt a mixture vector autoregressive (MVAR) model 

framework that allows for a multi-modal distribution of the residuals. A comparison between 

the respective results of a VAR and MVAR approach suggests that the mixture of 

distributions allows for a better assessment of the effect that adverse shocks have on 

counterparty credit risk, the real economy and banks’ capital requirements. Consequently, 

we argue that the MVAR provides a more accurate assessment of risk since it captures the 

fat tail events often observed in time series of default probabilities. 

 

JEL classification : C15, E44, G01, G21 

Keywords: stress testing, MVAR, tier 1 capital ratio, counterparty risk, Luxembourg banking 

sector 
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Non-Technical Summary  

The recent crisis period brought attention not only to the underlying deficiencies in banking 

sector risk management practices it also highlighted some fundamental inadequacies in 

financial sector regulatory frameworks. As a result, the true magnitude of the potential risks 

to financial stability at the onset of the crisis seems to have been significantly 

underestimated.  

Perhaps one of the more important lessons of the recent financial crisis was the clear 

indication that the usefulness and applicability of commonly used statistical models remains 

limited in the presence of extreme events.  Moreover, such models can break down 

dramatically when confronted with shocks that are several standard errors from the historical 

mean. Owing to their inability to capture extreme events, these models seem inappropriate 

for stress-testing exercises given authorities’ focus on extreme but plausible scenarios. Our 

work, framed in the context of a stress testing model for bank counterparty credit risk, 

attempts to capture the effect of exogenous fat tail events on bank capitalization levels by 

using a Mixture Vector Autoregressive (MVAR) model. This class of model relies on a 

multimodal marginal distribution in order to capture the effect of highly unlikely events. The 

use of a mixture of distributions, as opposed to a single distribution, in the model makes it 

possible to intercept fat tail events that would be poorly, or perhaps not at all, captured by 

models using a univariate marginal distribution. In our view, the mixture of distributions 

allows us to better capture the effect that adverse shocks have on counterparty credit risk as 

well as the real economy. 

In this study, we estimate and compare two different econometric models in order to 

calculate tier 1 capital ratios for both baseline and adverse scenarios under severe 

exogenous shocks. We apply the following methodology. First we estimate a standard VAR 

that incorporates the probability of default, euro area GDP growth in real terms, the real 

interest rate and a Luxembourg property price index in order to link the economic 

environment with an empirical measure of financial sector stability; in our case the probability 

of default. Given the nature of the VAR model specification, the econometric framework 

adopted in this work also allows for feedback between the probability of default of banking 

sector counterparties and the real economy. By contrast, the MVAR incorporates a bivariate 

marginal distribution which is able to accommodate “fat tails” and thus capture distant tail 

effects. It is the difference between the marginal distributions of the respective econometric 

models that enables our evaluation of the impact that fat tail events have on capitalization 

levels.  

We argue that, compared to a VAR model, using the MVAR model to assess counterparty 

risk provides a more accurate representation of the true risk since the latter can capture the 

more extreme movements often observed in time series of default probabilities. According to 

the results in the paper, the VAR model is shown to consistently underestimate counterparty 

credit risk. In simulations that apply adverse macroeconomic shocks to the variables 

included in the econometric model, it is found that the minimum level of tier 1 capital required 
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to withstand these shocks is actually underestimated by the VAR model. For shocks to euro 

area real GDP growth the magnitude of this underestimation equates to a difference in the 

tier 1 capital ratio of approximately 104 basis points. For some banks, this may represent a 

significant amount of capital.  

Accounting for increased tail risk, in our view, provides a more accurate assessment of how 

shocks affect the real economy and, in turn, tier 1 capitalization ratios. From the 

policymaker’s perspective, these results have some important implications. First, it suggests 

that the level of counterparty credit risk is being underestimated. A direct consequence of 

this result is that tier 1 capital levels extracted from reduced-form models based on 

univariate marginal distributions may actually be insufficient to withstand the magnitude of 

exogenous shocks currently being used to assess bank capitalization requirements. 

Furthermore, in the context of an early warning indicator, it could possibly provide a wrong 

signal to policymakers. In view of these results, and in order to facilitate the policy maker’s 

decision process, it would seem appropriate to revisit the applicability of stress testing 

models that rely on univariate marginal distributions in the presence of large negative 

shocks.  

Future work may attempt to compare the results from the MVAR to other non-linear tools.  In 

particular, it would be worth comparing the mixture VAR to the structural VAR with non-

normal residuals.  This alternative framework also allows for innovations to follow a mixture 

of normal distributions but uses this feature to provide the identifying assumptions necessary 

to recover structural shocks to the system. There is another area of comparison we could 

pursue. The estimation technique used to determine the parameters of the MVAR model has 

some parallels with the class of Markov regime switching models. However, for the MVAR, 

the underlying process that governs the dynamics of the regime transition probabilities 

respects a different set of assumptions. Therefore, it would seem interesting to compare the 

performance and output of the MVAR model to a regime switching model. Such a study 

could provide us with additional information on which class of model is best suited to capture 

fat tail events when a stress testing exercise is specified in terms of a reduced-form model. 
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1. Introduction 

The financial crisis that began in 2008 highlighted not only the poor risk-management 

practices implemented by the financial sector; it also illustrated weaknesses in financial 

regulatory and oversight frameworks. In particular, three major post-crisis lessons emerged. 

First, analysing financial stability requires a system-wide perspective rather than a strict 

micro-prudential approach.  Second, there is an important link between macroeconomic 

conditions and financial stability that, prior to the crisis, was poorly understood and 

inadequately monitored. Third, statistical models of the linkages between the financial 

system and the real economy may break down in the face of extreme events.  To address 

these three challenges, this paper applies a mixture vector autoregression (MVAR) in the 

context of a macro-economic stress test in order to illustrate the inadequacy of commonly 

employed VAR models.  In forward-looking simulations, the MVAR model can provide multi-

modal distributions for counterparty risk in the banking sector, reflecting the possible 

asymmetries and non-linearities that may manifest in the linkages between macroeconomic 

developments and financial stability. 

The Financial Sector Assessment Programmes (FSAP) launched by the IMF and the World 

Bank in 1999 spawned a variety of stress-testing tools and numerous surveys have been 

published on this subject; for example see Sorge (2004), ECB (2006), Drehmann (2008) and 

Foglia (2009).  However, in the period leading up to the recent financial crisis these FSAP 

analyses failed to identify significant instabilities (Alfaro and Drehmann (2009), Borio and 

Drehmann (2009)).  Part of the problem is that many stress-testing tools focus on the impact 

of an adverse macro-economic scenario on the balance sheets of individual banks.  In this 

context the micro-prudential perspective, that makes the assumption that macro-economic 

shocks are exogenous, needs to be complemented by a system-wide - or macro-prudential - 

perspective.  Borio (2009, 2010) argues that although micro-prudential analysis may find that 

financial institutions are sound on an individual basis, in actual fact, the financial system as a 

whole may be unstable.  For this reason, macro-prudential analysis considers the cross-

sectional dimension in order to identify possible common (or correlated) exposures across 

financial institutions that are not apparent when assessing the diversification of portfolios 

within individual institutions.  In addition, macro-prudential analysis considers the time 

dimension to identify possible procyclical patterns in aggregate financial developments that 

could amplify business cycle fluctuations. 

This leads to the second lesson of the crisis, concerning the link between macroeconomic 

conditions and financial stability.  A recent survey by the Basel Committee on Banking 

Supervision (2011) reveals that much economic analysis focuses on transmission channels 
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from the real to the financial sector (e.g. the macro stress tests mentioned previously) or 

from the financial to the real sector (e.g. the strand of literature on the bank balance sheet 

channel, external finance premium and the financial accelerator).  However, there have been 

few attempts to capture transmission in both directions.  Since there is no common 

theoretical framework in which to analyse these linkages in general equilibrium, empirical 

studies often adopt a reduced-form approach to limit misspecification errors.  In general, this 

involves extending standard macroeconomic vector autoregression (VAR) models to include 

a measure of financial stability, whether derived from financial market data or from bank 

balance sheets. 

For example, Jacobson, Lindé and Roszbach (2005) included the aggregate default 

frequency from a panel of non-financial corporations as an exogenous variable in a 

macroeconomic VAR.  Using a separate panel logit regression they showed that 

macroeconomic variables also explain default risk at the firm level.  However, one limitation 

of their approach was that the financial stability measure - the aggregate default frequency - 

entered into the VAR as an exogenous variable.  Huang, Zhou and Zhu (2009) use a similar 

micro-macro setup.  However, they obtain bank-specific probabilities of default from market 

data on CDS trades for 12 major U.S. banks.  In their case, the macro VAR only includes 

financial variables such as stock returns, stock price volatility and interest rates in addition to 

bank probability of default and correlation aggregated over their portfolio of banks.  The latter 

variables are projected forward using bank-specific logit regressions. 

Hoggarth, Sorensen and Zicchino (2005) adopt a more integrated approach, by including 

their financial stability measure directly as an endogenous variable in a macroeconomic VAR 

for the UK.  As a proxy for financial stability, they use loan write-offs from the aggregate 

banking sector balance sheet.  Marcucci and Quagliariello (2008) performed a similar 

exercise for Italy using the flow of non-performing loans in the banking sector (normalised by 

total loans).  Filosa (2008) experimented with two other measures of financial stability from 

the Italian banking sector (the stock of non-performing loans or the interest margin), as well 

as two exogenous macroeconomic variables (euro area interest rate and euro exchange 

rate).  Dovern, Meier and Vilsmeier (2010) estimated a macroeconomic VAR for Germany 

adding either loan write-offs or return on equity in the banking sector.  To avoid possible 

non-stationarity, the previous studies usually estimated VARs in growth rates.  However, 

Alves (2005) and Åsberg-Sommar and Shahnazarian (2009) allowed for possible 

cointegration among the endogenous variables, estimating a constrained VAR known as a 

vector error correction (VEC) model.  Both these studies used market-based indicators of 

expected default frequency instead of bank data. 
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The third lesson of the crisis considered here is that most statistical models face limitations 

in the presence of extreme events.  Drehmann, Patton and Sorensen (2006, 2007) note that 

the linear specification of standard VARs may provide an adequate approximation to the 

data generating process during periods of relative tranquility, but can break down 

dramatically when considering shocks that are several standard errors from the historical 

mean.  This makes them inappropriate for stress-testing, given the focus on “extreme but 

plausible scenarios,” a point also illustrated by the examples in Misina and Tessier (2008).  

Drehmann et al. estimate a non-linear macroeconomic VAR for the UK based on a third-

order Taylor expansion.  Unlike for the linear VAR, they find that impulse responses can 

differ significantly depending on the size and sign of the macro-economic shock.  To 

illustrate the consequences in a stress-test context, they feed these impulse responses into 

a separate probit model for the aggregate corporate liquidation rate.  Puddu (2010) 

integrates the financial variable (in his case the share of non-performing loans) directly as an 

additional endogenous variable in a non-linear VAR estimated separately for ten different 

economies.  Monnin and Jokipii (2010) also find evidence of non-linearity when they 

introduce dummy variables in their panel VAR corresponding to periods when the banking 

sector “distance to default” was either high or low by historical standards. 

Fong and Wong (2008) argued that stress tests based on standard linear models will 

necessarily underestimate the probability of default conditional on an adverse 

macroeconomic shock.  This is because linear models assume that default rates and 

macroeconomic shocks follow underlying distributions that are normal and therefore 

unimodal.  Such an assumption cannot sufficiently discriminate between tranquil periods and 

the extreme events that are the focus of stress tests.  A simple histogram of loan default 

rates in Hong Kong banks reveals a clearly bimodal distribution with a minor peak at higher 

default rates around the time of the Asian financial crisis.  To capture this bimodality, Fong 

and Wong implement a class of mixture vector autoregressive (MVAR) models proposed by 

Fong, Li, Yau and Wong (2007).  This model can be viewed as a mixture of two Gaussian 

VARs, producing a predictive distribution with different peaks associated with tranquil 

periods and extreme events.  Compared to the standard linear VAR, Monte Carlo 

simulations with the MVAR suggest much higher credit losses for a given set of 

macroeconomic shocks. 

In this paper, we use the MVAR framework to extend previous work by Rouabah and Theal 

(2010) evaluating aggregate credit risk for Luxembourg’s banking sector.  We compare 

stress-test results based on a mixture of normals (MVAR) model to those obtained with a 

standard linear VAR.  We also calculate Basel II tier 1 capital ratios under the MVAR 

framework and compare these to the values obtained from a standard linear VAR model. 
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This remainder of this paper is structured as follows.  First, we briefly review our measure of 

counterparty risk for Luxembourg. Then we describe the MVAR model before providing a 

brief description of the VAR. Afterwards, we perform the estimation of the MVAR model.  In 

section 6 we compare the predictive abilities (via their predictive distributions) of the two 

models.  In the seventh section we evaluate the response of the MVAR model to exogenous 

macroeconomic shocks. We then simulate Tier 1 capital requirements in the presence of 

these shocks.  Lastly we conclude. 

 

2. Evaluating Counterparty Creditworthiness in Luxembourg 

In order to estimate the probability of default of counterparties in the Luxembourg banking 

sector, an aggregate balance sheet was constructed using the ratio of provisions on loans to 

total loans over all sectors. This ratio was then used as a proxy for the aggregate probability 

of default, thereby providing a metric for assessing the vulnerability of the Luxembourg 

financial system to various adverse macroeconomic scenarios.   

The historical probability of default series used here consists of quarterly observations over 

the period spanning from the first quarter of 1995 until the third quarter of 2011. We 

represent the probability of default using the notation tp . Since tp  is a probability, and 

therefore lies in the fixed interval [ ]1,0 , a logit transform was applied in order to map the 

probabilities into the real number space,ℜ .   








 −
=

t

t
t p

p
y

1
ln    (1) 

The analytical form of the logit transform is presented in equation (1). Here, tp  is 

transformed such that ty  takes on values in the interval ∞<<∞− ty .  After transformation, 

ty  and tp  are inversely related.  This inverse relationship also applies to the first difference 

series of ty .  The macroeconomic framework for the VAR(p) model adopted in this work 

consists of a joint system of four linear equations for the transformed probability of default, 

euro area real GDP growth, the real interest rate (EURIBOR 3-month) and a Luxembourg-

specific real property price index. The VAR model is specified in terms of first differences, 

except for euro area GDP which is included as a growth rate. Following a lag selection test 

based on the Bayesian information criteria (BIC), two lags are used in the VAR in order to 

capture any autocorrelation in the time series data. This specification also allows for 
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feedback effects between the macroeconomic variables and the transformed probability of 

default series. Furthermore, the possibility of using one or two lags of the endogenous 

variable in each equation facilitates the persistence and transmission of exogenous shocks 

through the system.   

 

3. The MVAR model: A tool to capture extreme events 

Fong et al. (2007) developed the MVAR model as a multivariate extension of the mixture 

autoregression model in Wong and Li (2000). An ( )kpKnMVAR ;,  model with K  

components for an observed n -dimensional vector tY  takes the following form: 

( ) ( )( )∑
=

−−−
−

− Θ−−Θ−Θ−Θ−ΩΦ=ℑ
K

k
ptpktktkktkktt k

YYYYyF
1

1221101
2

1

Kα          (2) 

Where ty  is the conditional expectation of tY , kp  is the autoregressive lag order of the 

thk component, 1−ℑt  is the available information set up to time 1−t , ( )⋅Φ  is the cumulative 

distribution function of the multivariate Gaussian distribution, kα  is the mixing weight of the 

thk  component distribution, 0kΘ  is an n-dimensional vector of constant coefficients and 

  
Θk1,K,Θkpk

 are the nn ×  autoregressive coefficient matrices of the thk  component 

distribution.  Lastly, kΩ  is the nn ×  variance-covariance matrix of the thk  component 

distribution.  One convenient characteristic of the MVAR is that individual components of the 

MVAR can be non-stationary while the entire MVAR model remains stationary.  

It is possible to estimate the parameters of the MVAR using the expectation-maximization 

(EM) algorithm of Dempster et al. (1977).  This assumes a vector of (generally) unobserved 

variables ( )Τ= Kttt ZZZ ,1, ,,K  defined as: 



 ≤≤

=
otherwise

KicomponentithefromcomesYif
Z

th
t

it
0

,1;1
,                        (3) 

Where the conditional expectation of the binary indicator itZ ,  gives the probability that an 

observation originates (or does not originate) from the thi  component of the mixture.   

As shown by Fong et al. (2007), the conditional log-likelihood function of the MVAR model 

can be written as follows: 
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Where the following variable definitions apply: 
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A number of model parameters need to be estimated.  The parameter vector of the MVAR 

model is, in this case, 




 ΩΘΨ Τ

kkk
ˆ,

~̂
,α̂ .  Here kα̂  are the estimated mixing weights of the K  

component distributions, ΤΘ k

~̂
 are the estimated nn ×  autoregressive coefficient matrices and 

kΩ̂  are estimates of the K  nn ×  variance covariance matrices.  As discussed in Fong et al. 

(2007), for the purpose of identification, it is assumed that 021 ≥≥≥≥ Kααα L  and 

∑ =
k

k 1α .  In the vector ktX  in equation (5), the first element (i.e. the 1) is a scalar quantity.  

As shown in Fong et al. (2007), the equations for the expectation and maximization steps 

can be obtained as follows.  In the expectation step, the missing data Z  are replaced by 

their expectation conditional on the parameters Θ~  and on the observed data TYY K1 .  If the 

conditional expectation of the thk  component of tZ  is denoted kt ,τ  then the expectation step 

is calculated according to equation (6). Another way to interpret the expression for kt ,τ  is to 

think of it in terms of a Markov transition probability. However, in the context of the MVAR it 

is a transition probability that is independent of its past values. This differs from a first order 

Markov process where the value of a transition probability at time t  is conditional on its past 

value at time 1−t . The MVAR can be thought of as a special case of a regime switching 

model in which the transition probabilities are independent rather than conditional on past 

values. 

Expectation Step: 
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Following the expectation step, the maximization step can then be used to estimate the 

parameter vector Θ~ .   

The M-step equations are defined in Fong et al. (2007) as: 

Maximization Step: 
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where   k =1,K,K .  The model parameters are subsequently obtained by maximizing the log-

likelihood function given in equation (4).    

While the EM algorithm can be used to estimate the model parameters, in practice it is 

possible for the maximization routine to converge to a local rather than a global optimum or 

to encounter a fixed point at which it is no longer possible to increase the likelihood.  

Nevertheless, starting from an arbitrary point ( )0Φ  in the parameter space, the algorithm 

almost always converges to a local maximum.  In this sense, however, the algorithm cannot 

guarantee convergence to the global maximum in the presence of multiple maxima.  For this 

reason we modified the simple EM estimation described in Fong et al. (2007) and included a 

variable neighbourhood search (VNS) routine. This may also help to mitigate the slow 

convergence of the EM algorithm in the presence of a large amount of incomplete 

information (see McLachlan and Krishnan (2008)). 

 

4. Data and Estimation of the VAR model 

The data consists of historical probabilities of default calculated on a quarterly basis over the 

period spanning the first quarter of 1995 until the third quarter of 2011 yielding a total of 67 

observations. Figure 1 shows a kernel density estimation of the distribution of the logit 

transformed probabilities of default.   

[ Figure 1 about here ] 
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Along with the probability of default, the model incorporates data on euro area real GDP 

growth, the real interest rate and the change in real property prices for a Luxembourg price 

index. The series for euro area real GDP growth effectively enters the model as a proxy for 

financial sector aggregate profitability while property prices and the real interest rate are 

used to capture balance sheet effects and changes in counterparty creditworthiness. This 

combination of variables allows for possible feedback effects between the probability of 

default series and the evolution of the macroeconomic variables. Since data on the 

aggregate default rates of Luxembourg banking sector counterparties was unavailable, it 

was necessary to construct the series of historical default probabilities.  These default 

probabilities were calculated using a ratio of provisions on loans to total loans to all sectors.  

Subsequently, this ratio was used as an approximation for the aggregate sector probability of 

default.  It is important to emphasize that although provisioning provides an estimate of the 

probability of default, loan loss provisions are, in effect, an imperfect approximation of default 

rates over the business cycle.  More specifically, provisioning in some countries can be used 

in order to take advantage of tax deductions and thus provisioning may only partially reflect 

credit risk concerns and the true degree of loan impairments on a bank’s balance sheet. It 

should also be mentioned that, in some cases, loan loss provisions themselves can be used 

in order to adhere to regulatory capital requirements. Luxembourg does not have a national 

credit registry so we use loan provisions as a proxy for default probabilities. These data are 

reported as part of the supervisory framework. In this context, the loan loss provision data 

represents banks’ expectations about counterparty default and are not a direct measure of 

default probability. The provisioning data may also be sensitive to banks’ internal risk 

management models and practices. Given the length of the series, we have controlled for 

some firms which have entered and exited the sample over time. Lastly, both of these data 

series are backward looking, so the results should be interpreted with caution.   

Using a standard lag length test, the Hannan-Quinn criterion selects a VAR model with a lag 

length of 2. The corresponding VAR(2) model was estimated and the variable coefficients 

and their respective standard errors are reported in table 1. 

[ Table 1 about here ] 

The signs of the coefficients appear appropriate for the expected dependence of the 

probability of default on the individual macroeconomic variables.  For example, positive 

increases in the growth rates of euro area real GDP result in an increase in the variable ∆y t .  

However, this effect acts with a lag which may suggest that balance sheet changes occur 

gradually over time, possibly due to frictions.  This is because y t  is inversely related to the 

probability of default, and therefore a decrease in euro area real GDP growth results in a 
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positive increase in the probability of default for counterparties in Luxembourg’s banking 

sector.  Furthermore, the magnitude of the euro area GDP coefficients suggests that this 

effect is important for Luxembourg.  This is consistent with the interpretation that 

Luxembourg’s economy is sensitive to the fundamentals of the euro area economy4. There 

is a similar effect for the change in the property price index and the positive coefficient on the 

second lag of the change in property prices variable implies that increases in property values 

reduce counterparty default risk over time. Increases in the real interest rate also 

demonstrate a possible effect on the creditworthiness of counterparties but, although the 

interest rate coefficient is negative, it is not statistically significant. This finding may not be 

unusual, as other authors have encountered similar results; see for example Virolainen 

(2004).  Since neither of the lagged coefficients ty∆  was found to be significant, this 

suggests that there is no significant degree of autocorrelation in the probability of default 

series but the same cannot be said for the euro area GDP time series. Consequently, 

exogenous shocks will not be highly persistent and this will reduce the impact these shocks 

can have on the transformed default series.  These findings suggest that the VAR(2) model 

can capture a dynamic response to an initial shock.  Using Monte Carlo simulations as 

detailed in Rouabah and Theal (2010)5, it is possible to simulate distributions of the 

counterparty probability of default with the MVAR model. 

Post estimation analyses were conducted on the residuals of the VAR model. Figure 2 

shows the individual kernel density plots of the VAR(2) model residuals. 

[ Figure 2 about here ] 

The distributions of the residuals display clear evidence of non-normality, particularly for the 

default probability and property price series. This strongly suggests that the underlying data 

generating process is non-normal. Lutkepohl’s joint test for normality rejects the null 
                                                           

4 In fact, we have omitted Luxembourg real GDP growth from the VAR estimation. The reasons for 
this are twofold. The first is that banks in Luxembourg are primarily foreign branches and subsidiaries 
which tend to be more sensitive to growth in the euro area as a whole rather than domestic 
developments in Luxembourg. Secondly, the financial sector contributes approximately 20% to 
Luxembourg’s GDP growth, which could result in a cointegrating relationship between GDP growth 
and the logit-transformed probability of default series. 

5 A detailed description of the SUR model specification and its estimation is provided in Rouabah and 

Theal (2010). 
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hypothesis that the residuals are multivariate normal at the 1% level of significance leading 

to the conclusion that a VAR model fails to capture the data generating process underlying 

the four variables. Consequently, the results of the statistical tests on the VAR(2) model 

would seem to justify the use of the MVAR model as an appropriate alternative that may 

better capture the underlying dynamics of the model variables. 

 

 5. Estimation of the MVAR Model 

The estimation results and statistical tests seem to confirm the inadequacy of the VAR 

model and lead to the conclusion that the MVAR may be the more appropriate choice of 

model. In order to estimate the MVAR model parameters and avoid convergence to a poorly 

behaved local maximum, it was necessary to implement an expectation maximization with 

variable neighbourhood search (EMVNS) algorithm6. Four neighbourhood structures were 

used to perturb the model parameters.  Given the parameter specification of the MVAR 

model, the EMVNS is used to search the following neighbourhoods: 1) perturbation of the 

distribution mixing weights, 2) perturbation of the intercept vector, 3) perturbation of the 

autoregressive coefficient matrices and, 4) perturbations of the variance-covariance 

matrices.  Since the MVAR log-likelihood function has as its parameter set all the 

expressions in equation (7), the above specification for the neighbourhood structures 

enables a thorough search of the parameter space of the log-likelihood function and 

increases the chances that the EMVNS converges to the global maximum. 

It is important to address a few important details that are inherent in the empirical 

implementation and estimation procedure.  First, the diagonal values of the variance-

covariance matrix may need to be regularized in order to ensure it remains positive definite.  

We therefore calculate the condition number of the covariance matrix and add a small, 

positive value to the main diagonal of the matrix if necessary.  The magnitude of this number 

is close to the empirical precision of the computer on which the code is executed.  Second, 

to ensure a computationally efficient estimation procedure, one of the stopping conditions 

monitors the amount of CPU time consumed by a given iteration in the maximization phase 

of the algorithm.  If convergence is not achieved within a pre-specified CPU time limit, the 

current iteration is terminated and the algorithm proceeds to the next one.  The same limit is 

                                                           

6 The EMVNS algorithm is described in more detail in Appendix 1. 
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applied to the search of a given neighbourhood structure.  In both cases, the time limit 

employed is approximately 20 seconds7. 

We use a two-distribution mixture so results may be interpreted in terms of two regimes; one 

for economic “good” times and the other for economic “bad” times. The entries for kt ,τ , the 

conditional probability that a given observation originates from component 2,1=k  of the 

distribution, suggest that component one probabilities are larger during so-called “good” 

economic periods, and component two probabilities tend to be associated with periods of 

economic stress, although this classification is not entirely rigorous.  The actual number of 

observations associated with tranquil times is 34 compared to 29 associated with times of 

turmoil.  The absence of a clearer distinction between good and bad times may be in part 

attributed to the increased volatility and the relatively short length of the time series data 

used in this work. 

Tables (2a) and (2b) provide the estimated MVAR coefficients and their respective standard 

errors for the two component distributions. The mixing weights of the distributions were 

estimated to be 0.556721 =α  for the first component distribution and 44328.02 =α  for the 

second component distribution. The standard errors reported for the MVAR coefficients were 

estimated using Louis’ (1982) method8.  Louis’ method is based on the empirical evaluation 

of both the observed information in Y  and missing information in Z .  In order to obtain 

these matrices it is necessary to evaluate the second derivatives of the likelihood function9.  

In the case of the MVAR the second derivatives were derived analytically, although for more 

complicated likelihood functions it is conceivable that they may not exist.  If closed-form 

expressions are not available, second derivatives may be approximated numerically, 

although at the cost of lower numerical precision.  In any case, once the second derivatives 

are  known, the standard errors can be extracted from the complete information matrix, I , 

which is defined as the difference between the observed information and missing information 

matrices as given by equation (8). 

                                                           

7
 At first glance, this limit may seem excessively large.  However, the algorithm was implemented in 

MATLAB, an interpreter language, for which run-times tend to be slower than for compiled languages.  
An implementation using compiled binary code may substantially reduce this limit. 

8
 The procedure and equations for the estimation of the standard errors were obtained from C. S. 

Wong in the form of a private communication of an unpublished manuscript. 

9 As these expressions are outside the scope of this work, they are not provided here. 
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The following variable definitions apply here: l  is the MVAR log-likelihood function, Y is the 

observed data and θ  contains the estimated model coefficients.  cI  and mI  are the 

complete information and missing information matrices, respectively. 

[ Figure 3 about here ] 

Figure 3 shows the convergence of the likelihood function.  Although the number of iterations 

required to achieve convergence is fairly low, the curve remains monotonic.  The EM 

algorithm required 24 iterations to converge10.   

[ Table (2a) about here ] 

[ Table (2b) about here ] 

Tables (2a) and (2b) provide the estimated coefficients and standard errors for the 

MVAR(4,2;2,2) model. The tables are informative and provide some insight into the 

dynamics and feedback mechanisms between the macroeconomic environment and the 

logit-transformed and first differenced probability of default series, ∆y t , thereby linking the 

financial sector with the macroeconomic environment.   

For the first component distribution (table 2a), the signs of the coefficients in the first column 

seem appropriate for the expected link between the macroeconomic environment and the 

creditworthiness of Luxembourg’s banking sector counterparties. In fact, the results for the 

first component distribution correspond rather closely to the VAR(2) model results in terms of 

both magnitude and the significance of variables. Nevertheless there are some important 

differences. Unlike the VAR model, in the MVAR model’s first component, there is no effect 

from lagged values of euro area GDP growth on the transformed default series. At the same 

time it captures the autocorrelation, the strong effect of euro area GDP on ∆y t  suggests that 

profitability quickly affects counterparty credit risk. However, there is a strong and persistent 

effect from GDP growth originating from the second MVAR component. In addition, the 

second component of the MVAR also displays evidence of persistence in ∆y t , but it acts 

                                                           

10
 Convergence was defined as an improvement in the log-likelihood function between two successive 

iterations that is less than 6101 −× . 
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with a lag, as shown by the negative and significant coefficient of 2−∆ ty  in the equation for 

∆y t . This implies that shocks to the macroeconomic variables will pass from period to period 

with, albeit, a lagged effect.  

The dynamics captured by the euro area GDP growth equation also underscore the 

important differences between the two econometric models.  In the VAR model, there is a 

feedback loop between lagged values of the transformed default probability and euro area 

real GDP growth as well as a persistent effect given that the two lagged GDP coefficients 

are highly statistically significant. This result implies that euro area real GDP growth tends to 

increase when counterparty PDs recede. In the MVAR case, with respect to GDP for the 

euro area, there appears to be a feedback mechanism at work between property prices, 

GDP growth and counterparty creditworthiness. However, this mechanism is somewhat 

diminished, in the first component distribution where the lagged GDP coefficients are not 

statistically significant. Conversely, this effect is clearly present in the second distribution 

component. In addition, there is a persistence effect, as the coefficient of the lagged term in 

euro area GDP growth is statistically significant. Taken together, the two MVAR components 

encompass the feedback mechanism present in the VAR model; however it is distributed 

across components or “regimes”. Additionally, in the second MVAR component distribution, 

there is a statistically significant effect on GDP growth stemming from the change in the 

property price index. The positive property price coefficient suggests that a growing real 

estate sector results in an improvement in macroeconomic conditions. This effect is not 

present in the VAR model. 

The behaviour of the interest rate equation is markedly different in the MVAR estimation 

compared to the VAR model.  In the VAR model, the only statistically significant effect on the 

interest rate comes from changes in the property price index. Increases in property prices in 

the previous period are associated with lower interest rates at time t . Conversely, there is 

also a small, but opposite, effect occurring at the second lagged value of the property price 

index. Specifically, a decline in property prices in the second period previous tends to 

decrease interest rates suggesting that favourable conditions two periods before lead to 

improved market conditions in the current period.  Insofar as Luxembourg property prices 

are correlated with those in the euro area, this result could be interpreted as a general 

symptom of favourable economic periods. If shocks are applied to the property index, they 

will exhibit some persistence, but this will be mitigated to some extent as a result of the 

second lag coefficient. The MVAR model displays strikingly different mechanics for the 

interest rate equation. For both the first and second component of the MVAR, there is 

evidence of a feedback mechanism between the transformed probability of default and the 
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change in the real rate. For the first component, increases in counterparty creditworthiness 

appear to increase interest rates (i.e. since ∆y t  and the probability of default are inversely 

related11). The second MVAR component captures the opposite effect; when the probability 

of default decreases, interest rates increase. Thus, the MVAR seems to capture two different 

economic regimes, although the result for the first component seems difficult to explain in a 

macroeconomic context. Furthermore, since the coefficients on 1−∆ ty  and 2−∆ ty  are both 

positive and statistically significant, there will be a strong persistence in the effect of the 

transformed default rates on tr∆ . Additionally, positive euro area real GDP growth leads to 

increases in the real interest rate.  Finally, for both the VAR and MVAR models, lagged 

values of the change in the property price index are negatively related to changes in the real 

interest rate. Interestingly, the intercept coefficient in the first component of the MVAR is 

equal to -25 basis points and is statistically significant. This may suggest the first MVAR 

component can be associated with a macroeconomic environment in which interest rates are 

declining perhaps as a result of looser monetary policy and/or low inflation although we do 

not pursue this any further in this work. 

The VAR model equation for the change in the property price index also displays distinctly 

different characteristics from the MVAR equation. In the case of the VAR(2) equation, only 

the second lag term of the index change has a positive and statistically significant effect on 

tp∆ . From an economic perspective, this seems simplistic and unrealistic. Indeed, the 

expectation would be that interest rates would affect the property price index. However, 

under the MVAR framework, the dynamics of tp∆  are much more complex. For the first 

component distribution alone, there are five statistically significant coefficient estimates. 

First, there is a strong and persistent relationship between changes in the real interest rate 

and tp∆  whereby increases in the real rate of interest strongly and persistently decrease 

property prices. A similar effect is present in the second MVAR component but with the 

exception that only the lag-1 value of the change in interest rate is statistically significant and 

that the sign on the coefficient is positive rather than negative. The second MVAR 

component also reveals a feedback between counterparty creditworthiness and property 

prices. Lagged values of the transformed default probabilities persistently drive up the 

                                                           

11  Specifically, the PD measure increases since if ∆y t  decreases, PD augments. 
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property index, or, put differently, when default probabilities decline, property prices increase 

suggesting that borrowers are at lower risk of default and the property market starts to grow. 

However, in the context of the second MVAR component this effect is reinforced by the 

feedback mechanism between 1−∆ ty , 2−∆ ty  and the real interest rate in the equation for tr∆ . 

More specifically, as tp∆  increases, this increases ∆y t  through the second lag coefficient. In 

response, the transformed default probabilities lead to increases in the real interest rate. 

These increases in the real rate then increase the property price index through their first 

lagged value. This could conceivably lead to a real estate bubble, but the feedback loop is 

mitigated to some extent by the first lagged value of tp∆ . There is also an opposing effect 

present in the first MVAR component where lagged values of the change in real interest rate 

result in declines in the property price index.  

In comparison to the VAR(2) model, the MVAR(4,2;2,2) estimation captures a much richer 

set of dynamics between the macroeconomic variables used in the model. Taken together, 

these results can be interpreted as evidence in favour of the existence of a house price 

channel of monetary policy transmission in Luxembourg. These findings suggest that the 

real estate sector may be a relevant indicator of economic performance in Luxembourg. This 

is roughly consistent with Morhs (2010) who finds that there is a response of both credit and 

GDP to residential property price shocks in Luxembourg.   

[ Table 3 about here ] 

Table 3 shows the estimated residual covariance matrices for the two components.  These 

matrices are symmetric.  The values of the covariance estimates are considerably small, 

most being less than 5101 −× .  However, there are certain values in particular that are 

statistically significant. For the first component distribution all values on the diagonal of the 

matrix express significance at a high level. In addition the covariance between ∆y t  and 

( )EUR
tGDPln∆  is significant and equal to 4100995.1 −×  and the covariance between ∆y t  and 

property prices is also significant and equal to 5100574.3 −× . This result seems to confirm 

the link between the property markets and the creditworthiness of banking sector 

counterparties in Luxembourg. 

The picture is different under the second component distribution. None of the diagonal 

values of the covariance matrix are statistically significant. However, almost all of the off-

diagonal elements are with the exception of the covariance between ∆y t  and ( )EUR
tGDPln∆ . 

This seems to confirm the interpretation that the first and second MVAR components can be 

thought of in terms of different macroeconomic “regimes”. Nevertheless, it is important to 
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understand that the MVAR model is not entirely equivalent to a regime switching model. In 

fact, it can be interpreted as a regime switching model in which the transition probabilities do 

not follow a Markov process12, although these conditional probabilities do change from 

period to period as an outcome of the EM estimation procedure. 

As a post-estimation analysis, it is possible to plot the equation by equation residuals for the 

MVAR model as was done for the VAR. The individual MVAR residual plots are depicted in 

figure 4. 

[ Figure 4 about here ] 

As can be seen in the figure, there are noticeable differences between the VAR and MVAR 

residuals. The residuals of the MVAR equations for euro area real GDP growth, changes in 

the real interest rate and changes in the property price index show a clear Gaussian 

distributional form. For the ∆y t  residuals, there are some peaks evident in the tails of the 

distribution. Furthermore, there is a slight shift to the left in the case of the second 

distributional component. However, for all four residual series, the distributions are centred 

about zero. To eliminate the discrepancies between the residual distributions in the ∆y t  

equation case, it might be worth considering the inclusion of additional macroeconomic 

variables into the model. More complex financial linkages may be captured through the 

addition of a domestic stock market index series, or example. Nevertheless, it is important to 

maintain a balance between the complexity of the model and a parsimonious estimation. The 

addition of Luxembourg-specific variables might also serve to better capture the national 

dimensions of the underlying ∆y t  process. 

 

6. Comparison of Predictive Distributions  

To demonstrate the ability of the MVAR model to capture extreme events, we can estimate 

the predictive distributions, ( )1−ℑttZF , at different time periods in the data sample. In the 

accompanying figures, values on the x-axis represent logit transformed probabilities of 

default (PD), consequently, they take on values in the interval ∞≤≤∞− 0 . Since the 

transformed values and the PDs are inversely related, increasingly negative values in the 

figure represent increasing values of the probability of default.   What the figures show are 

                                                           

12 That is, the transition probabilities are not conditional on the past and are, instead, independent. 
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the conditional densities for the next observation 1+tY  (specifically the next observation for 

the logit-transformed probability of default). The x-axis gives the values for the transformed 

PDs. The y-axis is a frequency. Thus the figures give the density for the next observation of 

the transformed PD, given the current observation. 

Figure (5) shows the one-step ahead predictive distribution of the VAR and MVAR models 

for the period 2007Q2 before the crisis. On the other hand, figure (6) shows the associated 

predictive distribution of the MVAR and VAR models during Q1 of 2009. This was identified 

as a high point of stress during the recent financial crisis. In interpreting the figures, it is 

useful to recall that, under the logit transformation, a decrease in the transformed indicator 

translates to an increase in the actual probability of default of the counterparty.   

[ Figure 5 about here ] 

[ Figure 6 about here ] 

The red arrows in the plots indicate the realized values of the change in the credit risk 

indicator ( )ty∆  at time t . The blue arrow shows the out-of-sample value at time 1+t , while 

the pink arrow indicates the value of ty∆  at time 1−t .  These quantities are 0.062 and -

0.290, for the periods 2007Q2 and 2009Q1, respectively.  In Figure 5, both the MVAR and 

VAR distributions are somewhat similar during the period before the crisis. Nevertheless, the 

MVAR distribution is shifted slightly to the left, indicating higher PDs on average, and its 

dispersion is larger that that for the corresponding VAR predictive distribution. This suggests 

that, under the MVAR model, negative values of the transformed default rates 

(correspondingly, increased PD values) are more likely than under the VAR model. This 

means that the VAR predictive distribution underestimates the risk of deterioration in 

counterparty creditworthiness during “normal” times. In Figure 6, there are some strong 

differences between the two distributions. In this case, we have calculated the distributions 

for a period during a high point in the crisis, 2009 Q1. The MVAR distribution exhibits clear 

bimodality with a strong peak centred at approximately -0.21. In this case, the mean of the 

VAR predictive distribution is located only at -0.03. The secondary peak of the MVAR model 

clearly illustrates the higher probability assigned to negative movements in the transformed 

default series; equivalently increases in counterparty probability of default. As figures (5) and 

(6) show, there are clear differences in the assessment of counterparty creditworthiness in 

the next period between the MVAR and VAR model predictive distributions. 

 

7. The response of the MVAR Model to Exogenous Macroeconomic Shocks 
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Having estimated the models, it is now possible to subject the models to exogenous, pre-

specified adverse macroeconomic shocks. This provides an empirical measure of how the 

probability of default of counterparties responds to exogenous shocks in the macroeconomic 

environment.  To predict the response of the system, we can use a Monte Carlo simulation 

to generate both a baseline and a conditional adverse scenario for the probability of default.  

The baseline scenario is constructed by first drawing a random sample from a standard 

normal distribution. Through recursion of the respective VAR or MVAR model equations, it is 

therefore possible to generate simulated forward values of both the probability of default and 

the macroeconomic variables over some finite horizon period.  The end result of this process 

is that a distribution of the probabilities of default can be constructed.  The distribution thus 

generated can subsequently be considered as the baseline scenario. 

The adverse scenario is constructed in a similar manner, except that at various periods 

throughout the simulation horizon exogenous shocks are applied to the individual 

macroeconomic variable equations.  Consequently, conditional on the shocks, the 

distribution of the adverse scenario probability of default is governed by the dynamics of the 

macroeconomic variables in combination with the persistence of the shocks induced by the 

lagged specification of the model.  This ability to generate two separate distributions for the 

probability of default allows for comparison of the estimated baseline and adverse scenarios 

when an artificial and exogenous shock is applied to a particular macroeconomic variable.  

The application of the exogenous shocks to the variables of the model allows us to analyze 

the sensitivity of the probability of default distribution to specific adverse macroeconomic 

developments. Under this type of deterministic approach, the response of the distribution 

can be evaluated for more complex macroeconomic scenarios.  In any case, comparing the 

distributions provides information on the probable impact of macroeconomic shocks on the 

probability of default and can thus the procedure can be considered as a form of stress test. 

In order to perform the actual stress test, we must decide on some exceptional but plausible 

stressed scenarios.  It is critical that the scenarios selected are neither too extreme nor too 

mild in their impact on the system because if the exogenous shocks are chosen 

inappropriately then the exercise will provide no relevant insight. 

Three different stressed scenarios were employed with shocks being applied individually to 

the selected macroeconomic variables.  The scenarios were chosen in order to focus on the 

various aspects of the transmission mechanism between the macroeconomic environment 

and the counterparty credit risk of the Luxembourg banking sector.  The three specific 

scenarios include both domestic and EU level effects and are taken over a horizon of 10 

quarters starting in 2011 Q3 and with the simulation ending in 2013 Q4. The scenarios are 

comprised of the following macroeconomic conditions: 
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1. A decrease in Euro area real GDP growth of magnitude -0.025 in the first quarter of 

2012, followed by successive shocks of -0.028, 0.0 and 0.01 in the subsequent 

quarters 

2. An increase in real interest rates of 100 basis points beginning in the first quarter of 

2012  and a further increase of 100 basis points in 2012 Q3 

3. A reduction in real property prices of magnitude 4% in 2012 Q1 and subsequent 

losses of 4% over the remaining quarters of 2012 

 

Shocks of this magnitude represent particularly severe disturbances.  It is important to note 

that if the shocks are too small, the test will provide no insight into the possible impact on the 

probability of default.  Conversely, if the shocks are too large in magnitude, then the 

probability of such an event occurring would be too small and the testing exercise risks being 

uninformative.  All shocks are applied on a quarter-to-quarter basis over the separate 

scenarios.  For both the baseline and adverse scenarios we performed 5000 Monte Carlo 

simulations of the model and used the 5000 simulated probabilities of default in the last 

quarter of 2013 to construct the histograms. The actual simulation results for the four 

scenarios are displayed in figures 7 through 9. 

[ Figure 7 about here ] 

[ Figure 8 about here ] 

[ Figure 9 about here ] 

For all scenarios, the histograms exhibit a characteristic shift to the right of the stressed 

distribution, indicating that the average probability of default under the adverse scenario 

increases relative to the baseline scenario.  An associated increase in the standard deviation 

is also observed along with increased weight in the tails of the distributions.  For the shock to 

euro area real GDP growth, in the VAR case, the mean probability of default increases from 

approximately 1.09% to 1.70% under the adverse scenario. The corresponding change for 

the MVAR estimation is from 1.09% to 3.2%.  For the remaining scenarios the increase is 

from 1.05% to 1.42% for the VAR and 1.24% to 1.59% for the MVAR under the real interest 

rate scenario. For the property price shocks, the VAR distribution increases from 0.9% to 

1.27% while the MVAR increases from 1.17% to 2.02%.  Tail probabilities under the stressed 

VAR scenario do not exceed their MVAR counterparts and no scenario displays probabilities 

of default in excess of approximately 8.14%.  Despite the severity of the scenarios, the 

results for the selected adverse scenarios suggest that exogenous shocks to fundamental 

macroeconomic variables have a limited and somewhat mild effect on the average 
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probability of default, except in the MVAR euro area real GDP growth and property price 

scenarios. For instance, the largest change in average counterparty PDs occurs for the 

MVAR under shocks to euro area GDP growth with a change of 2.11%. Under the VAR 

scenarios, the largest change between the adverse and baseline scenario also occurs under 

the GDP scenario, but the magnitude of the change is only 0.61%. The MVAR increase is 

more than 3.4 times larger than that observed for the VAR model. 

 

8. Simulation and Calculation of Capital Requirements 

The results of the Monte Carlo simulations can also be used to gain insight into the 

capitalization level of the entire Luxembourg banking sector.  Using equations (9) and (10) 

for capital requirements for corporate exposures and Basel II tier 1 capital ratios, 

respectively, it is possible to calculate capital requirements under the adverse scenario.   
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In equation (9), ( )PDG  represents the inverse normal distribution with the probability of 

default, PD , as its argument.  Here ( )⋅N  is the cumulative normal distribution, cR  denotes 

asset correlation and b is the maturity adjustment.  The asterisk superscript on k  denotes 

capital requirements under the stressed scenario.  In equation (10), K  denotes tier 1 capital, 

Π  and RWA  denote profit and risk weighted assets, respectively, and cE  represents 

corporate exposures.  In equation (10) we do not specify a profit model. 

This is an informative stress test in that it provides information on capitalization ratios under 

adverse macroeconomic conditions.  To calculate the capital ratio, we use data on bank 

profitability, risk weighted assets, loans and the amount of tier 1 capital held by banks.  As 

the entire sector is studied, it is important to stress these values represent average 

quantities.  Throughout the analysis, the loss given default (LGD) is assumed to be 0.5, or 

50%, and a maturity adjustment is used based on the Basel II regulations for risk-weighted 

assets for corporate, sovereign and bank exposures.  The mean value of the probability of 

default values obtained from the Monte Carlo simulation is used during the calculation of the 

Basel II correlation and capital requirements.   
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[ Figure 10 about here ] 

Figure 10 presents a bar chart showing the banking sector capital ratios under the four 

stressed scenarios in comparison to the baseline scenario. There are some noticeable 

differences between the capital requirements calculation for the VAR and MVAR models. 

Empirically the difference is 1.37%, suggesting that the VAR(2) model underestimates the 

required amount of capital in face of exogenous shocks to euro area real GDP growth. 

Similar, although less dramatic, results can be observed for the other variables. For the real 

interest rate the magnitude of the difference is 0.10% while for property prices the difference 

is approximately equal to 0.88%. 

These differences have significant consequences from a regulatory perspective, suggesting 

that estimations of Tier 1 capital performed using univariate VAR models consistently 

underestimate the required amount of Tier 1 capital needed to withstand adverse 

macroeconomic shocks. The difference between the calculated values has its origins in the 

distributional assumptions underlying the VAR and MVAR models. In the context of the 

MVAR, the model is capturing a significant amount of the tail effects that, being based on the 

assumption of univariate normality, the VAR model does not capture. This is an important 

result.  

One word of caution concerning the interpretation of the capital requirements calculations is 

necessary. As mentioned in Jones, Hilbers and Slack (2004), stress tests can “provide 

information on how much could be lost under a given scenario, but not how much is likely to 

be lost”.  The results of a stress test then are a numerical estimate of sensitivity conditional 

on a given set of adverse macroeconomic conditions and allow us to understand the 

response or sensitivity of a financial system to various risk factors.  In the absence of a 

formalized selection criterion for the adverse scenario, a series of assumptions and 

judgments must be made in determining the exceptionality and plausibility of the shocks.  

Naturally, this introduces a wide margin of error into the testing results and they must 

consequently be interpreted with care.  This is true even more so if the data is aggregated 

over the entire sector rather than being at the level of an individual bank. 

 

Conclusion 

The main results of this study suggest that, compared to a framework with a unimodal 

distribution, using the MVAR model to assess counterparty risk provides a more accurate 

representation of the true risk by better capturing the more extreme movements observed in 

24



 

empirical measures of credit risk. According to the results in this paper, the VAR model 

consistently underestimates counterparty credit risk. In a simulation that applies adverse 

macroeconomic shocks to the econometric model, it is found that the level of Tier 1 capital 

required to withstand these shocks is underestimated by the VAR model. For shocks to euro 

area real GDP growth the magnitude of this underestimation is approximately 1.4% of Tier 1 

capital. Financially, for some banks, this may represent a significant amount of capital. The 

underestimation of capital requirements in the case of the univariate model may demonstrate 

that there is an information gain provided by the MVAR model which is not present in the 

VAR framework.  However, at this time there is no statistical test that we can apply to these 

results in order to empirically evaluate their significance. 

One limitation of the MVAR is that it does not take into account endogenous actions by 

financial institutions or monetary authorities.  While such an assumption may be valid in the 

short-term, in the long-run this is clearly unrealistic and an oversimplification.  When 

stressed, financial institutions will readjust their balance sheets by selling distressed assets 

or rebalancing portfolios as part of their normal risk management activities.  Additionally, 

central banks and governments will intervene during crisis either through monetary policy or 

more exceptional measures as was observed during the most recent period of instability.  

These effects, of considerable importance to the promotion of financial stability, are not 

captured by the types of econometric models employed in stress testing.  Consequently, the 

actual response of the financial system to an exogenous shock may be quite different than 

the outcome predicted by a stress test. 

Future work may attempt to compare the results from the MVAR to other non-linear tools.  In 

particular, it would be worth comparing the mixture VAR to the structural VAR with non-

normal residuals proposed by Lanne and Luetkepohl (2010).  This alternative framework 

also allows for innovations to follow a mixture of normal distributions but uses this feature to 

provide the identifying assumptions necessary to recover structural shocks to the system.  

Maciejowska (2010) reports Monte Carlo results indicating that the EM algorithm (also used 

in this paper) outperforms alternatives in estimating this form of the Structural VAR.  Another 

natural non-linear model to serve as a basis for comparisons would be the Markov-Switching 

VAR based on the work by Krolzig (1997) or by Sims and Zha (2006). 
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Figure 1: Kernel Density Plot of the Logit Transformed Probability of Default Series 
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Figure 2: Kernel density plots of the residuals for VAR equation t∆y  

0

2

4

6

8

-.28 -.24 -.20 -.16 -.12 -.08 -.04 .00 .04 .08 .12 .16 .20

D
en

si
ty

Change in yjt residuals

0

20

40

60

80

100

120

-.015 -.010 -.005 .000 .005 .010 .015

D
en

si
ty

Euro area real GDP grow th residuals

0

20

40

60

80

100

120

-.016 -.012 -.008 -.004 .000 .004 .008 .012 .016

D
en

si
ty

Change in real interest rates residuals

0

5

10

15

20

25

-.10 -.08 -.06 -.04 -.02 .00 .02 .04 .06 .08 .10

D
en

si
ty

Change in property price index residuals

 

30



 

Figure 3: Kernel Density Plots of the Distribution of the MVAR Component 1 and 

Component 2 Residuals 
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Figure 4: Plot of the Convergence Progress of the Log-likelihood Function of the 

MVAR(4,2;2,2) Model 
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Figure 5: Predictive distributions at time 49=t  (2007Q2) for the MVAR and VAR 
models 
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Figure 6: Predictive distributions at time 56=t (2009Q1) for the MVAR and VAR 
models 
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Figure 7: Distributions of Adverse and Baseline scenarios under adverse shocks to 

euro area real GDP growth
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Figure 8: Distributions of Adverse and Baseline scenarios under adverse shocks to 

the real interest rate 
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Figure 9: Distributions of Adverse and Baseline scenarios under adverse shocks to 

changes in Luxembourg’s real property price index 
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Figure 10: Differences in the Capital Requirements as Evaluated Under the VAR(2) and 
MVAR(4,2;2,2) Models 

Comparison Between Baseline and Adverse Scenario Capital Ratios 
Calculated using the VAR and MVAR models
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Table 1:  

Coefficient and standard error estimates for the VAR model 

Dependent Variables 
 

ty∆  ( )EUGDPlog∆  tr∆  tprop∆  

1−∆ ty  
-0.0236 

(0.1238) 

0.0187** 

((0.0071) 

-0.0036 

(0.0064) 

0.0366 

(0.0376) 

2−∆ ty  
-0.0807 

(0.1335) 

0.0199** 

(0.0076) 

0.0108 

(0.0068) 

-0.0401 

(0.0405) 

( )EU
tGDP 1log −∆  

3.6234 

(2.5123) 

0.4863** 

(0.1435) 

-0.0964 

(0.1288) 

1.2175 

(0.7624) 

( )EU
tGDP 2log −∆  

4.3652* 

(2.3779) 

-0.2679** 

(0.1358) 

0.1536 

(0.1219) 

-0.0230 

(0.7216) 

1−∆ tr  
-0.0891 

(2.5942) 

-0.02026 

(0.1481) 

0.1128 

(0.1330) 

-0.5150 

(0.7873) 

2−∆ tr  
0.6769 

(2.6117) 

0.0266 

(0.1492) 

0.0101 

(0.1339) 

-0.8704 

(0.7926) 

1−∆ tprop  
0.1204 

(0.4461) 

0.0112 

(0.0255) 

-0.0460** 

(0.0229) 

0.1730 

(0.1354) 

2−∆ tprop  
1.1273** 

(0.4232) 

-0.0031 

(0.0242) 

0.0373* 

(0.0217) 

0.3763** 

(0.1284) 

intercept 
-0.0441** 

(0.0176) 

0.0025** 

(0.0010) 

-0.0006 

(0.0009) 

0.0050 

(0.0053) 

 

Notes:   

1. Standard error values are reported in brackets below their respective coefficient values. Entries in 
bold indicate statistically significant coefficients. 

2. In the equations of the VAR(2) model, a dummy variable has been added in order to control for a structural 
break. 
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Table 2a: 

Coefficient and standard error estimates for the first component distribution of the 
MVAR model (Distribution weight 55672.01 =α ) 

 

 

Notes:  

Standard error values are reported in italicized text below their respective coefficient estimates.  The 
values of 1.645 (indicated by “*”) and 1.96 (indicated by “**”) can be used to estimate the significance 
of the ratio of the coefficient estimate to its standard error.  Entries in bold indicate statistically 
significant coefficients.  This component can be interpreted as the dynamics under “good” times. 

VAR Component ∆y t  ( )EUR
tgln∆

 
∆rt  ∆pt  

0.0723 0.0203** -0.0166** -0.0076 
1−∆ ty  

(0.1324) (0.0101) (0.0079) (0.0460) 

0.1523 0.0282** 0.0075 -0.0858** 
2−∆ ty  

(0.1207) (0.0092) (0.0072) (0.0419) 

2.2067 0.1933 -0.0591 1.8256* ( )EUR
tg 1ln −∆  

(2.7345) (0.2079) (0.1628) (0.9493) 

0.6168 0.0966 0.1271 0.3841 ( )EUR
tg 2ln −∆  

(3.7652) (0.2854) (0.2237) (1.3058) 

-4.2248 -0.5274** 0.2215 -2.2900** 
∆rt −1 

(2.8233) (0.2151) (0.1670) (0.9765) 

2.7157 0.2112 -0.0423 -2.0653** 
2−∆ tr  

(2.3822) (0.1810) (0.1418) (0.8286) 

0.7138 0.0236 -0.0447 0.4955** 
∆pt −1 

(0.4899) (0.0374) (0.0292) (0.1700) 

1.0410** 0.0028 0.0570** 0.1065 
2−∆ tp  

(0.3894) (0.0296) (0.0232) (0.1351) 

-0.0390** 0.0019 -0.0025** -0.0001 
Intercept 

(0.0177) (0.0014) (0.0011) (0.0062) 

40



 

 

Table 2b: 

Coefficient and standard error estimates for the second component distribution of the 
MVAR model (Distribution weight 44328.02 =α ) 

 

VAR Component  ty∆  ( )EUR
tgln∆  tr∆  tp∆  

-0.0363 0.0249** 0.0257** 0.0724** 
∆y t −1 

(0.1533) (0.0040) (0.0033) (0.0222) 

-1.1425** 0.0013 0.0109** 0.0739** 
∆y t −2 

(0.1903) (0.0050) (0.0041) (0.0278) 

18.4103** 0.8470** 0.3179** -0.0953 ( )EUR
tg 1ln −∆  

(3.4560) (0.0894) (0.0740) (0.4754) 

11.4872** -0.3583** 0.0841 -0.1098 ( )EUR
tg 2ln −∆  

(2.3936) (0.0619) (0.0524) (0.3322) 

-0.3958 0.0350 -0.0029 1.4734** 
∆rt −1 

(2.7286) (0.0705) (0.0570) (0.3751) 

-1.4371 -0.01394 -0.1036 -0.2324 
∆rt −2  

(3.8572) (0.0999) (0.0898) (0.5534) 

-0.6479 0.0609** -0.0621** -0.2805** 
∆pt −1 

(0.5642) (0.0146) (0.0123) (0.0778) 

2.9775** -0.0232 0.0094 0.8666** 
∆pt −2 

(0.5833) (0.0151) (0.0129) (0.0806) 

-0.1388** 0.0005 -0.0008 0.0094** 
Intercept 

(0.0219) (0.0006) (0.0005) (0.0031) 

 

Notes:  

Standard error values are reported in italicized text below their respective coefficient estimates. The 
values of 1.645 (indicated by “*”) and 1.96 (indicated by “**”) can be used to estimate the significance 
of the ratio of the coefficient estimate to its standard error. Entries in bold indicate statistically 
significant coefficients.  This component can be interpreted as the dynamics under “bad” times. 
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Table 3: 

Variance-Covariance Matrices Estimation (values are divided by 3101 −× ) 

Variance-Covariance Matrix for MVAR Component 1 

 
ty∆  ( )EUR

tgln∆  tr∆  tp∆  

3,3630E+00** 1.0995E-01** 8.7501E-03 -2.5822E-04 

ty∆  
(6.9256E-01) (4.6668E-02) (3.3851E-02) (1.9758E-01) 

 1.9540E-02** 1.9530E-03 -2.7926E-02 

( )EUR
tgln∆  

 
(4.6711E-03) (2.5893E-03) (1.5783E-02) 

  1.1844E-02** 3.0574E-02** 

tr∆  

  
(2.8088E-03) (1.2885E-02) 

   4.0461E-01** 

tp∆  

   
(9.3931E-02) 

Variance-Covariance Matrix for MVAR Component 2 

 ∆y t  ( )EUR
tgln∆  ∆rt  ∆pt  

2,5673E+00 2,7722E-02 -1,1048E-02** -1,0249E-02** 

∆y t  
(3,7104E+00) (2,0105E+00) (1,0415E+00) (1,5139E-01) 

 1,7068E-03 1,2759E-04** 2,3017E-03** 

( )EUR
tgln∆  

 
(3,5145E+00) (4,5757E-01) (1,1953E+00) 

  1,1126E-03 -1,9412E-03** 

∆rt  

  
(3,4867E+00) (1,2632E+00) 

   4,7707E-02 

∆p t  

   
(3,5847E+00) 

 

Notes:  

Standard errors are provided in italicized brackets. The values of 1.645 (indicated by “*”) and 1.96 

(indicated by “**”) can be used to estimate the significance of the ratio of the coefficient estimate to its 

standard error. 
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Appendix : The Variable Neighbourhood Search  

Variable neighbourhood search methods have broad application in solving global 

optimization problems.  The basic premise of the VNS approach as proposed by Mladenović 

and Hansen (1997) is to subject an initial solution candidate to a sequence of local changes 

such that this effects an improvement in the value of an objective function after each 

iteration.  The search is continued in this fashion until a (local) optimum is located.  Initially, a 

pre-defined neighbourhood, iΝ , having i  neighbourhood structures is defined where the set 

of solutions in the thi  neighbourhood of x  is given by ( )xiΝ .  A graphical illustration of the 

principle behind the VNS method is provided in figure A1. 

Figure A1: Illustration of the EMVNS search procedure 

 

From the figure one can see how it is possible to combine both the EM and VNS algorithms.  

The resulting hybrid is termed the EMVNS algorithm and is described in detail by Bessadok 

et al. (2009).  The novelty of the approach is to render the convergence of the EM routine 

independent of the initial starting – or candidate – solution.  This may also help to overcome 

the problems posed by pathological likelihood functions with large attraction basins.  In 

effect, the EMVNS uses the EM as a local search method that works in the larger context of 

a global optimization routine that seeks to maximize the log-likelihood function in order to 

obtain the model parameters.  Under EMVNS, the maximization of the log-likelihood is 

performed under the condition that the estimated model parameters belong to the set of 

feasible neighbourhood solutions.  As discussed in Bessadok et al. this means that the 

neighbourhood structures must be defined as subintervals derived from the observed 

distribution of the data. 
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In terms of its implementation, the EMVNS algorithm proceeds as follows.  First, an initial 

candidate solution θ  is used to initialize the EM algorithm.  An initial solution can be found 

either by using a judicious choice of starting parameters or by an automatic initialization 

routine.  For example, Biernacki et al. compare various methods for choosing the starting 

values of the EM algorithm for multivariate Gaussian mixture models.  In terms of automatic 

initialization schemes, one popular method makes use of the k-means clustering algorithm 

proposed by Hartigan and Wong (1979).  The aforementioned subinterval ranges of the 

data, indicated by pI , can be extracted from the respective sample statistics of the means, 

covariances and mixing weight parameters of the input data.  Next, the maximum number of 

embedded intervals in pI  is specified which gives max,,2,1, kkI pk K= .  Here k  identifies a 

given search neighbourhood. The algorithm’s complete pseudo code is provided in the 

accompanying box (A1).  By formulating the search in this manner, the complete set of 

neighbourhood structures is searched for local optima and, based on the convergence 

criteria, the algorithm selects the best solution within the set of feasible solutions in the 

search space. 

 

Box A1: EMVNS algorithm pseudo code.  

 

Repeat the following until the stopping condition is satisfied: 

i. set 1←k  

ii. Repeat the following until maxkk =  

a. Perturbation/shaking phase.  Randomly draw a 
parameter vector θ ′  from the thk  
neighbourhood of θ  where ( )θθ pkI∈′ ; 

b. Estimate the model using EM. Using θ ′  as the 
candidate solution, the EM algorithm is applied 
to obtain a local optimum denoted by θ ′′ ; 

c. Return to (i).  If the local optimum is an 
improvement over the candidate, use this 
optimum so that θθ ′′←  and continue the 

search procedure setting ( )11 ←kI p ; otherwise 
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