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ABSTRACT 

 

 

We propose an integrated treatment of the problems of optimal monetary and 

fiscal policy, for an economy in which prices are sticky and the only available sources of 

government revenue are distorting taxes. Our linear-quadratic approach allows us to nest 

both conventional analyses of optimal monetary stabilization policy and analyses of 

optimal tax-smoothing as special cases of our more general framework. We show how a 

linear-quadratic policy problem can be derived which yields a correct linear 

approximation to the optimal policy rules from the point of view of the maximization of 

expected discounted utility in a dynamic stochastic general-equilibrium model. Finally, 

we derive targeting rules through which the monetary and fiscal authorities may 
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implement the optimal equilibrium. 
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Non-technical summary 

 

We propose an integrated treatment of the problems of optimal monetary and 

fiscal policy, for an economy in which prices are sticky and the only available sources of 

government revenue are distorting taxes. The integrated treatment allows us to consider 

how familiar characterizations of optimal monetary policy must be generalized to take 

account of the consequences of alternative monetary policies for the government budget, 

and to consider fiscal shocks as one of the types of disturbances to which monetary 

policy may need to respond. It also allows us to show how conventional characterizations 

of optimal tax policy can be generalized to the case in which economic activity depends 

not solely upon supply-side incentives, but on aggregate (nominal) demand as well. 

 

We show how a linear-quadratic policy problem can be derived that yields a 

correct linear approximation to the optimal policy rules from the point of view of the 

maximization of expected discounted utility.  This requires that we take account of the 

effects of stabilization policy (i.e., of the variances of endogenous variables) on the 

average levels of consumption and hours worked; but we show that such effects can be 

incorporated into the quadratic objective, so that we need not consider nonlinearities in 

the constraints on our policy problem. 

 

We show that a quadratic loss function can be derived that consists of a weighted 

average of two terms each period: squared deviations of the inflation rate from an optimal 

rate of zero, and squared deviations of log output from a target output level that varies 

over time as a function of exogenous disturbances to preferences, technology, and the 

government’s exogenous fiscal constraints. Thus consideration of the effects of tax 

distortions does not introduce any additional stabilization objectives beyond the ones 

(inflation stabilization and output-gap stabilization) considered in conventional 

treatments of monetary stabilization policy; both monetary and fiscal instruments should 

be used to stabilize inflation and the (appropriately defined) output gap. However, 

allowing for the distortions associated with raising government revenue can affect the 

weights on these objectives, and the proper definition of the target rate of output. 

5
ECB

Working Paper Series No. 345
April 2004



 We consider how the optimal responses to shocks vary depending on the degree 

of price stickiness, and show, in a calibrated example, that the optimal responses that 

would be derived under the assumption of complete price flexibility are quite different 

than those that are optimal if prices are even slightly sticky; this indicates that allowing 

for price stickiness is quite important in exercises of this kind. In particular, optimal 

policy involves much greater stability of the inflation rate if prices are sticky, while 

shocks should instead have permanent effects on the level of government debt and on tax 

rates, even in the presence of nominal government debt. 

 

Finally, we derive targeting rules through which the monetary and fiscal 

authorities may implement the optimal equilibrium.  An optimal targeting rule for 

monetary policy in the case of distorting taxes still has the form of a flexible inflation 

targeting rule, as in the literature that ignores the fiscal consequences of monetary policy, 

but the output gap should modify the inflation target in a different way. We also obtain a 

targeting rule for the fiscal authority, and this too requires the fiscal authority to base 

policy on the projected consequences of alternative government budgets for future 

inflation. 
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1 Introduction

While there are by now substantial literatures seeking to characterize opti-

mal monetary and fiscal policy respectively, the two literatures have largely

developed in isolation, and upon apparently contradictory foundations. The

modern literature on dynamically optimal fiscal policy often abstracts from

monetary aspects of the economy altogether, and so implicitly allows for no

useful role for monetary policy. When monetary policy is considered within

the theory of optimal fiscal policy, it is most often in the context of models

with flexible prices; in these models, monetary policy matters only (i) because

the level of nominal interest rates (and hence the opportunity cost of holding

money) determines the size of certain distortions that result from the attempt

to economize on money balances, and (ii) because the way in the price level

varies in response to real disturbances determines the state-contingent real

payoffs on (riskless) nominally-denominated government debt, which may

facilitate tax-smoothing in the case that explicitly state-contingent debt is

not available. The literature on optimal monetary policy has instead been

mainly concerned with quite distinct objectives for monetary stabilization

policy, namely the minimization of the distortions that result from prices

or wages that do not adjust quickly enough to clear markets. At the same

time, this literature typically ignores the fiscal consequences of alternative

monetary policies; the characterizations of optimal monetary policy that are

obtained are thus strictly correct only for a world in which lump-sum taxes

are available.

Here we wish to consider the way in which the conclusions reached in

each of these two familiar literatures must be modified if one takes simul-

taneous account of the basic elements of the policy problems addressed in

each literature. On the one hand, we wish to consider how conventional

conclusions with regard to the nature of an optimal monetary policy rule

must be modified if one recognizes that the government’s only sources of rev-

enue are distorting taxes, so that the fiscal consequences of monetary policy

matter for welfare. And on the other hand, we wish to consider how conven-
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tional conclusions with regard to optimal tax policy must be modified if one

recognizes that prices do not instantaneously clear markets, so that output

determination depends on aggregate demand, in addition to the supply-side

factors stressed in the conventional theory of optimal taxation.

A number of recent papers have also sought to jointly consider optimal

monetary and fiscal policy, in the context of models with sticky prices; im-

portant examples include Correia et al., (2001), Schmitt-Grohé and Uribe

(2001), and Siu (2001). Our approach differs from those taken in these

papers, however, in several respects. First, we model price stickiness in a

different way than in any of these papers, namely, by assuming staggered

pricing of the kind introduced by Calvo (1983). This particular form of price

stickiness has been widely used both in analyses of optimal monetary policy

in models with explicit microfoundations (e.g., Goodfriend and King, 1997;

Clarida et al., 1999; Woodford, 2003) and in the empirical literature on op-

timizing models of the monetary transmission mechanism (e.g., Rotemberg

and Woodford, 1997; Gali and Gertler, 1999; Sbordone, 2002).

Perhaps more importantly, we obtain analytical results rather than purely

numerical ones. To obtain these results, we propose a linear-quadratic ap-

proach to the characterization of optimal monetary and fiscal policy, that

allows us to nest both conventional analyses of optimal monetary policy, such

as that of Clarida et al. (1999), and analyses of optimal tax-smoothing in the

spirit of Barro (1979), Lucas and Stokey (1983), and Aiyagari et al. (2002) as

special cases of our more general framework. We show how a linear-quadratic

policy problem can be derived which yields a correct linear approximation

to the optimal policy rules from the point of view of the maximization of ex-

pected discounted utility in a dynamic stochastic general-equilibrium model,

building on the work of Benigno and Woodford (2003) for the case of optimal

monetary policy when lump-sum taxes are available.

Finally, we do not content ourselves with merely characterizing the opti-

mal dynamic responses of our policy instruments (and other state variables)

to shocks under an optimal policy, given one assumption or another about the

nature and statistical properties of the exogenous disturbances to our model

economy. Instead, we also wish to derive policy rules that the monetary and

fiscal authorities may reasonably commit themselves to follow, as a way of
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implementing the optimal equilibrium. In particular, we seek to characterize

optimal policy in terms of optimal targeting rules for monetary and fiscal pol-

icy, of the kind proposed in the case of monetary policy by Svensson (1999),

Svensson and Woodford (2003), and Giannoni and Woodford (2002, 2003).

The rules are specified in terms of a target criterion for each authority; each

authority commits itself to use its policy instrument each period in whatever

way is necessary in order to allow it to project an evolution of the economy

consistent with its target criterion. As discussed in Giannoni and Woodford

(2002), we can derive rules of this form that are not merely consistent with

the desired equilibrium responses to disturbances, but that in addition (i)

imply a determinate rational-expectations equilibrium, so that there are not

other equally possible (but less desirable) equilibria consistent with the same

policy; and (ii) bring about optimal responses to shocks regardless of the

character of and statistical properties of the exogenous disturbances in the

model.

2 The Policy Problem

Here we describe our assumptions about the economic environment and pose

the optimization problem that jointly optimal monetary and fiscal policies are

intended to solve. The approximation method that we use to characterize the

solution to this problem is then presented in the following section. Further

details of the derivation of the structural equations of our model of nominal

price rigidity can be found in Woodford (2003, chapter 3).

The goal of policy is assumed to be the maximization of the level of

expected utility of a representative household. In our model, each household

seeks to maximize

Ut0 ≡ Et0

∞∑
t=t0

βt−t0

[
ũ(Ct; ξt)−

∫ 1

0

ṽ(Ht(j); ξt)dj

]
, (2.1)

where Ct is a Dixit-Stiglitz aggregate of consumption of each of a continuum

of differentiated goods,

Ct ≡
[∫ 1

0

ct(i)
θ

θ−1 di

] θ−1
θ

, (2.2)
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with an elasticity of substitution equal to θ > 1, and Ht(j) is the quantity

supplied of labor of type j. Each differentiated good is supplied by a single

monopolistically competitive producer. There are assumed to be many goods

in each of an infinite number of “industries”; the goods in each industry j

are produced using a type of labor that is specific to that industry, and also

change their prices at the same time. The representative household supplies

all types of labor as well as consuming all types of goods.1 To simplify the

algebraic form of our results, we restrict attention in this paper to the case

of isoelastic functional forms,

ũ(Ct; ξt) ≡ C1−σ̃−1

t C̄ σ̃−1

t

1− σ̃−1
,

ṽ(Ht; ξt) ≡ λ

1 + ν
H1+ν

t H̄−ν
t ,

where σ̃, ν > 0, and {C̄t, H̄t} are bounded exogenous disturbance processes.

(We use the notation ξt to refer to the complete vector of exogenous distur-

bances, including C̄t and H̄t.)

We assume a common technology for the production of all goods, in which

(industry-specific) labor is the only variable input,

yt(i) = Atf(ht(i)) = Atht(i)
1/φ,

where At is an exogenously varying technology factor, and φ > 1. Inverting

the production function to write the demand for each type of labor as a

function of the quantities produced of the various differentiated goods, and

using the identity

Yt = Ct + Gt

to substitute for Ct, where Gt is exogenous government demand for the com-

posite good, we can write the utility of the representative household as a

function of the expected production plan {yt(i)}.2
1We might alternatively assume specialization across households in the type of labor

supplied; in the presence of perfect sharing of labor income risk across households, house-
hold decisions regarding consumption and labor supply would all be as assumed here.

2The government is assumed to need to obtain an exogenously given quantity of the
Dixit-Stiglitz aggregate each period, and to obtain this in a cost-minimizing fashion. Hence
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We can furthermore express the relative quantities demanded of the dif-

ferentiated goods each period as a function of their relative prices. This

allows us to write the utility flow to the representative household in the form

U(Yt, ∆t; ξt), where

∆t ≡
∫ 1

0

(
pt(i)

Pt

)−θ(1+ω)

di ≥ 1 (2.3)

is a measure of price dispersion at date t, in which Pt is the Dixit-Stiglitz

price index

Pt ≡
[∫ 1

0

pt(i)
1−θdi

] 1
1−θ

, (2.4)

and the vector ξt now includes the exogenous disturbances Gt and At as well

as the preference shocks. Hence we can write our objective (2.1) as

Ut0 = Et0

∞∑
t=t0

βt−t0U(Yt, ∆t; ξt). (2.5)

The producers in each industry fix the prices of their goods in monetary

units for a random interval of time, as in the model of staggered pricing

introduced by Calvo (1983). We let 0 ≤ α < 1 be the fraction of prices that

remain unchanged in any period. A supplier that changes its price in period

t chooses its new price pt(i) to maximize

Et

{ ∞∑
T=t

αT−tQt,T Π(pt(i), p
j
T , PT ; YT , τT , ξT )

}
, (2.6)

where Qt,T is the stochastic discount factor by which financial markets dis-

count random nominal income in period T to determine the nominal value of

a claim to such income in period t, and αT−t is the probability that a price

chosen in period t will not have been revised by period T . In equilibrium,

this discount factor is given by

Qt,T = βT−t ũc(CT ; ξT )

ũc(Ct; ξt)

Pt

PT

. (2.7)

the government allocates its purchases across the suppliers of differentiated goods in the
same proportion as do households, and the index of aggregate demand Yt is the same
function of the individual quantities {yt(i)} as Ct is of the individual quantities consumed
{ct(i)}, defined in (2.2).
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The function Π(p, pj, P ; Y, τ, ξ), defined in the appendix, indicates the

after-tax nominal profits of a supplier with price p, in an industry with com-

mon price pj, when the aggregate price index is equal to P , aggregate demand

is equal to Y , and sales revenues are taxed at rate τ. Profits are equal to after-

tax sales revenues net of the wage bill, and the real wage demanded for labor

of type j is assumed to be given by

wt(j) = µw
t

ṽh(Ht(j); ξ)

ũc(Ct; ξt)
, (2.8)

where µw
t ≥ 1 is an exogenous markup factor in the labor market (allowed to

vary over time, but assumed common to all labor markets),3 and firms are

assumed to be wage-takers. We allow for wage markup variations in order to

include the possibility of a “pure cost-push shock” that affects equilibrium

pricing behavior while implying no change in the efficient allocation of re-

sources. Note that variation in the tax rate τt has a similar effect on this

pricing problem (and hence on supply behavior); this is the sole distortion

associated with tax policy in the present model.

Each of the suppliers that revise their prices in period t choose the same

new price p∗t . Under our assumed functional forms, the optimal choice has a

closed-form solution
p∗t
Pt

=

(
Kt

Ft

) 1
1+ωθ

, (2.9)

where ω ≡ φ(1 + ν) − 1 > 0 is the elasticity of real marginal cost in an

industry with respect to industry output, and Ft and Kt are functions of

current aggregate output Yt, the current tax rate τt, the current exogenous

state ξt,
4 and the expected future evolution of inflation, output, taxes and

disturbances, defined in the appendix.

The price index then evolves according to a law of motion

Pt =
[
(1− α)p∗1−θ

t + αP 1−θ
t−1

] 1
1−θ , (2.10)

3In the case that we assume that µw
t = 1 at all times, our model is one in which both

households and firms are wage-takers, or there is efficient contracting between them.
4The disturbance vector ξt is now understood to include the current value of the wage

markup µw
t .
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as a consequence of (2.4). Substitution of (2.9) into (2.10) implies that

equilibrium inflation in any period is given by

1− αΠθ−1
t

1− α
=

(
Ft

Kt

) θ−1
1+ωθ

, (2.11)

where Πt ≡ Pt/Pt−1. This defines a short-run aggregate supply relation be-

tween inflation and output, given the current tax rate τt, current disturbances

ξt, and expectations regarding future inflation, output, taxes and distur-

bances. Because the relative prices of the industries that do not change their

prices in period t remain the same, we can also use (2.10) to derive a law of

motion of the form

∆t = h(∆t−1, Πt) (2.12)

for the dispersion measure defined in (2.3). This is the source in our model

of welfare losses from inflation or deflation.

We abstract here from any monetary frictions that would account for a

demand for central-bank liabilities that earn a substandard rate of return;

we nonetheless assume that the central bank can control the riskless short-

term nominal interest rate it,
5 which is in turn related to other financial asset

prices through the arbitrage relation

1 + it = [EtQt,t+1]
−1.

We shall assume that the zero lower bound on nominal interest rates never

binds under the optimal policies considered below,6 so that we need not

introduce any additional constraint on the possible paths of output and prices

associated with a need for the chosen evolution of prices to be consistent with

a non-negative nominal interest rate.

Our abstraction from monetary frictions, and hence from the existence

of seignorage revenues, does not mean that monetary policy has no fiscal

consequences, for interest-rate policy and the equilibrium inflation that re-

sults from it have implications for the real burden of government debt. For

5For discussion of how this is possible even in a “cashless” economy of the kind assumed
here, see Woodford (2003, chapter 2).

6This can be shown to be true in the case of small enough disturbances, given that the
nominal interest rate is equal to r̄ = β−1 − 1 > 0 under the optimal policy in the absence
of disturbances.
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simplicity, we shall assume that all public debt consists of riskless nominal

one-period bonds. The nominal value Bt of end-of-period public debt then

evolves according to a law of motion

Bt = (1 + it−1)Bt−1 + Ptst, (2.13)

where the real primary budget surplus is given by

st ≡ τtYt −Gt − ζt. (2.14)

Here τt, the share of the national product that is collected by the government

as tax revenues in period t, is the key fiscal policy decision each period; the

real value of (lump-sum) government transfers ζt is treated as exogenously

given, as are government purchases Gt. (We introduce the additional type of

exogenously given fiscal needs so as to be able to analyze the consequences of

a “purely fiscal” disturbance, with no implications for the real allocation of

resources beyond those that follow from its effect on the government budget.)

Rational-expectations equilibrium requires that the expected path of gov-

ernment surpluses must satisfy an intertemporal solvency condition

bt−1
Pt−1

Pt

= Et

∞∑
T=t

Rt,T sT (2.15)

in each state of the world that may be realized at date t,7 where Rt,T ≡
Qt,T PT /Pt is the stochastic discount factor for a real income stream, and

This condition restricts the possible paths that may be chosen for the tax rate

{τt}. Monetary policy can affect this constraint, however, both by affecting

the period t inflation rate (which affects the left-hand side) and (in the case

of sticky prices) by affecting the discount factors {Rt,T}.
Under the standard (Ramsey) approach to the characterization of an opti-

mal policy commitment, one chooses among state-contingent paths {Πt, Yt, τt, bt, ∆t}
7See Woodford (2003, chapter 2) for derivation of this condition from household opti-

mization together with market clearing. The condition should not be interpreted as an
a priori constraint on possible government policy rules, as discussed in Woodford (2001).
However, when we consider the problem of choosing an optimal plan from the among
the possible rational-expectations equilibria, this condition must be imposed among the
constraints on the set of equilibria that one may hope to bring about.
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from some initial date t0 onward that satisfy (2.11), (2.12), and (2.15) for

each t ≥ t0, given initial government debt bt0−1 and price dispersion ∆t0−1,

so as to maximize (2.5). Such a t0−optimal plan requires commitment, in-

sofar as the corresponding t−optimal plan for some later date t, given the

conditions bt−1, ∆t−1 obtaining at that date, will not involve a continuation

of the t0−optimal plan. This failure of time consistency occurs because the

constraints on what can be achieved at date t0, consistent with the exis-

tence of a rational-expectations equilibrium, depend on the expected paths

of inflation, output and taxes at later dates; but in the absence of a prior

commitment, a planner would have no motive at those later dates to choose

a policy consistent with the anticipations that it was desirable to create at

date t0.

However, the degree of advance commitment that is necessary to bring

about an optimal equilibrium is of only a limited sort. Let

Wt ≡ Et

∞∑
T=t

βT−tũc(YT −GT ; ξT )sT ,

and let F be the set of values for (bt−1, ∆t−1, Ft, Kt,Wt) such that there exist

paths {ΠT , YT , τT , bT , ∆T} for dates T ≥ t that satisfy (2.11), (2.12), and

(2.15) for each T , that are consistent with the specified values for Ft, Kt, and

Wt, and that imply a well-defined value for the objective Ut defined in (2.5).

Furthermore, for any (bt−1, ∆t−1, Ft, Kt, Wt) ∈ F , let V (bt−1, ∆t−1, Xt; ξt) de-

note the maximum attainable value of Ut among the state-contingent paths

that satisfy the constraints just mentioned, where Xt ≡ (Ft, Kt,Wt).
8 Then

the t0−optimal plan can be obtained as the solution to a two-stage optimiza-

tion problem, as shown in the appendix.

In the first stage, values of the endogenous variables xt0 , where xt ≡
(Πt, Yt, τt, bt, ∆t), and state-contingent commitments Xt0+1(ξt0+1) for the fol-

lowing period, are chosen, subject to a set of constraints stated in the ap-

pendix, including the requirement that the choices (bt0 , ∆t0 , Xt0+1) ∈ F for

8In our notation for the value function V, ξt denotes not simply the vector of distur-
bances in period t, but all information in period t about current and future disturbances.
This corresponds to the disturbance vector ξt referred to earlier in the case that the dis-
turbance vector follows a Markov process.
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each possible state of the world ξt0+1. These variables are chosen so as to

maximize the objective Ĵ [xt0 , Xt0+1(·)](ξt0), where we define the functional

Ĵ [xt, Xt+1(·)](ξt) ≡ U(Yt, ∆t; ξt) + βEtV (bt, ∆t, Xt+1; ξt+1). (2.16)

In the second stage, the equilibrium evolution from period t0 + 1 onward is

chosen to solve the maximization problem that defines the value function

V (bt0 , ∆t0 , Xt0+1; ξt0+1), given the state of the world ξt0+1 and the precom-

mitted values for Xt0+1 associated with that state. The key to this result is

a demonstration that there are no restrictions on the evolution of the econ-

omy from period t0 + 1 onward that are required in order for this expected

evolution to be consistent with the values chosen for xt0 , except consistency

with the commitments Xt0+1(ξt0+1) chosen in the first stage.

The optimization problem in stage two of this reformulation of the Ram-

sey problem is of the same form as the Ramsey problem itself, except that

there are additional constraints associated with the precommitted values for

the elements of Xt0+1(ξt0+1). Let us consider a problem like the Ramsey

problem just defined, looking forward from some period t0, except under the

constraints that the quantities Xt0 must take certain given values, where

(bt0−1, ∆t0−1, Xt0) ∈ F . This constrained problem can similarly be expressed

as a two-stage problem of the same form as above, with an identical stage two

problem to the one described above. Stage two of this constrained problem

is thus of exactly the same form as the problem itself. Hence the constrained

problem has a recursive form. It can be decomposed into an infinite sequence

of problems, in which in each period t, (xt, Xt+1(·)) are chosen to maximize

Ĵ [xt, Xt+1(·)](ξt), subject to the constraints of the stage one problem, given

the predetermined state variables (bt−1, ∆t−1) and the precommitted values

Xt.

Our aim here is to characterize policy that solves this constrained opti-

mization problem (stage two of the original Ramsey problem), i.e., policy that

is optimal from some date t onward given precommitted values for Xt. Be-

cause of the recursive form of this problem, it is possible for a commitment to

a time-invariant policy rule from date t onward to implement an equilibrium

that solves the problem, for some specification of the initial commitments Xt.

A time-invariant policy rule with this property is said by Woodford (2003,
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chapter 7) to be “optimal from a timeless perspective.”9 Such a rule is one

that a policymaker that solves a traditional Ramsey problem would be willing

to commit to eventually follow, though the solution to the Ramsey problem

involves different behavior initially, as there is no need to internalize the ef-

fects of prior anticipation of the policy adopted for period t0.
10 One might

also argue that it is desirable to commit to follow such a rule immediately,

even though such a policy would not solve the (unconstrained) Ramsey prob-

lem, as a way of demonstrating one’s willingness to accept constraints that

one wishes the public to believe that one will accept in the future.

3 A Linear-Quadratic Approximate Problem

In fact, we shall here characterize the solution to this problem (and simi-

larly, derive optimal time-invariant policy rules) only for initial conditions

near certain steady-state values, allowing us to use local approximations in

characterizing optimal policy.11 We establish that these steady-state values

have the property that if one starts from initial conditions close enough to

the steady state, and exogenous disturbances thereafter are small enough, the

optimal policy subject to the initial commitments remains forever near the

steady state. Hence our local characterization would describe the long run

character of Ramsey policy, in the event that disturbances are small enough,

and that deterministic Ramsey policy would converge to the steady state.12

9See also Woodford (1999) and Giannoni and Woodford (2002).
10For example, in the case of positive initial nominal government debt, the t0−optimal

policy would involve a large inflation in period t0, in order to reduce the pre-existing debt
burden, but a commitment not to respond similarly to the existence of nominal government
debt in later periods.

11Local approximations of the same sort are often used in the literature in numerical
characterizations of Ramsey policy. Strictly speaking, however, such approximations are
valid only in the case of initial commitments Xt0 near enough to the steady-state values of
these variables, and the t0−optimal (Ramsey) policy need not involve values of Xt0 near
the steady-state values, even in the absence of random disturbances.

12Benigno and Woodford (2003) gives an example of an application in which Ramsey
policy does converge asymptotically to the steady state, so that the solution to the ap-
proximate problem approximates the response to small shocks under the Ramsey policy,
at dates long enough after t0. We cannot make a similar claim in the present application,
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Of greater interest here, it describes policy that is optimal from a timeless

perspective in the event of small disturbances.

We first must show the existence of a steady state, i.e., of an optimal

policy (under appropriate initial conditions) that involves constant values of

all variables. To this end we consider the purely deterministic case, in which

the exogenous disturbances C̄t, Gt, H̄t, At, µw
t , ζt each take constant values

C̄, Ḡ, H̄, Ā, µ̄w > 0 and ζ̄ ≥ 0 for all t ≥ t0, and assume an initial real public

debt bt0−1 = b̄ > 0. We wish to find an initial degree of price dispersion

∆t0−1 and initial commitments Xt0 = X̄ such that the solution to the “stage

two” problem defined above involves a constant policy xt = x̄, Xt+1 = X̄ each

period, in which b̄ is equal to the initial real debt and ∆̄ is equal to the initial

price dispersion. We show in the appendix that the first-order conditions for

this problem admit a steady-state solution of this form, and we verify below

that the second-order conditions for a local optimum are also satisfied.

Regardless of the initial public debt b̄, we show that Π̄ = 1 (zero inflation),

and correspondingly that ∆̄ = 1 (zero price dispersion). Note that our

conclusion that the optimal steady-state inflation rate is zero generalizes the

result of Benigno and Woodford (2003) for the case in which taxes are lump-

sum at the margin. We may furthermore assume without loss of generality

that the constant values of C̄ and H̄ are chosen (given the initial government

debt b̄) so that in the optimal steady state, Ct = C̄ and Ht = H̄ each period.13

The associated steady-state tax rate is given by

τ̄ = sG +
ζ̄ + (1− β)b̄

Ȳ
,

where Ȳ = C̄ + Ḡ > 0 is the steady-state output level, and sG ≡ Ḡ/Ȳ < 1 is

the steady-state share of output purchased by the government. As shown in

the appendix, this solution necessarily satisfies 0 < τ̄ < 1.

We next wish to characterize the optimal responses to small perturbations

of the initial conditions and small fluctuations in the disturbance processes

around the above values. To do this, we compute a linear-quadratic approx-

imate problem, the solution to which represents a linear approximation to

13Note that we may assign arbitrary positive values to C̄, H̄ without changing the nature
of the implied preferences, as long as the value of λ is appropriately adjusted.
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the solution to the “stage two” policy problem, using the method introduced

in Benigno and Woodford (2003). An important advantage of this approach

is that it allows direct comparison of our results with those obtained in other

analyses of optimal monetary stabilization policy. Other advantages are that

it makes it straightforward to verify whether the second-order conditions hold

that are required in order for a solution to our first-order conditions to be

at least a local optimum,14 and that it provides us with a welfare measure

with which to rank alternative sub-optimal policies, in addition to allowing

computation of the optimal policy.

We begin by computing a Taylor-series approximation to our welfare mea-

sure (2.5), expanding around the steady-state allocation defined above, in

which yt(i) = Ȳ for each good at all times and ξt = 0 at all times.15 As a

second-order (logarithmic) approximation to this measure, we obtain16

Ut0 = Y ūc · Et0

∞∑
t=t0

βt−t0ΦŶt − 1

2
uyyŶ

2
t + Ŷtuξξt − u∆∆̂t

+ t.i.p. +O(||ξ||3), (3.1)

where Ŷt ≡ log(Yt/Ȳ ) and ∆̂t ≡ log ∆t measure deviations of aggregate out-

put and the price dispersion measure from their steady-state levels, the term

“t.i.p.” collects terms that are independent of policy (constants and func-

tions of exogenous disturbances) and hence irrelevant for ranking alternative

policies, and ||ξ|| is a bound on the amplitude of our perturbations of the

steady state.17 Here the coefficient

Φ ≡ 1− θ − 1

θ

1− τ̄

µ̄w
< 1

14Benigno and Woodford (2003) show that these conditions can fail to hold, so that a
small amount of arbitrary randomization of policy is welfare-improving, but argue that
the conditions under which this occurs in their model are not empirically plausible.

15Here the elements of ξt are assumed to be c̄t ≡ log(C̄t/C̄), h̄t ≡ log(H̄t/H̄), at ≡
log(At/Ā), µ̂w

t ≡ log(µw
t /µ̄w), Ĝt ≡ (Gt − Ḡ)/Ȳ , and ζ̂t ≡ (ζt − ζ̄)/Ȳ , so that a value

of zero for this vector corresponds to the steady-state values of all disturbances. The
perturbations Ĝt and ζt are not defined to be logarithmic so that we do not have to
assume positive steady-state values for these variables.

16See the appendix for details. Our calculations here follow closely those of Woodford
(2003, chapter 6) and Benigno and Woodford (2003).

17Specifically, we use the notation O(||ξ||k) as shorthand for O(||ξ, b̂t0−1, ∆̂
1/2
t0−1, X̂t0 ||k),

where in each case hats refer to log deviations from the steady-state values of the various
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t0 as an expansion parameter, rather than

∆̂t0 because (2.12) implies that deviations of the inflation rate from zero of order ε only
result in deviations in the dispersion measure ∆t from one of order ε2. We are thus entitled
to treat the fluctuations in ∆t as being only of second order in our bound on the amplitude
of disturbances, since if this is true at some initial date it will remain true thereafter.



measures the steady-state wedge between the marginal rate of substitution

between consumption and leisure and the marginal product of labor, and

hence the inefficiency of the steady-state output level Ȳ . Under the assump-

tion that b̄ > 0, we necessarily have Φ > 0, meaning that steady-state output

is inefficiently low. The coefficients uyy, uξ and u∆ are defined in the ap-

pendix.

Under the Calvo assumption about the distribution of intervals between

price changes, we can relate the dispersion of prices to the overall rate of

inflation, allowing us to rewrite (3.1) as

Ut0 = Y ūc · Et0

∞∑
t=t0

βt−t0 [ΦŶt − 1

2
uyyŶ

2
t + Ŷtuξξt − uππ2

t ]

+ t.i.p. +O(||ξ||3), (3.2)

for a certain coefficient uπ > 0 defined in the appendix, where πt ≡ log Πt

is the inflation rate. Thus we are able to write our stabilization objective

purely in terms of the evolution of the aggregate variables {Ŷt, πt} and the

exogenous disturbances.

We note that when Φ > 0, there is a non-zero linear term in (3.2), which

means that we cannot expect to evaluate this expression to second order using

only an approximate solution for the path of aggregate output that is accurate

only to first order. Thus we cannot determine optimal policy, even up to first

order, using this approximate objective together with approximations to the

structural equations that are accurate only to first order. Rotemberg and

Woodford (1997) avoid this problem by assuming an output subsidy (i.e.,

a value τ̄ < 0) of the size needed to ensure that Φ = 0. Here we do not

wish to make this assumption, because we assume that lump-sum taxes are

unavailable, in which case Φ = 0 would be possible only in the case of a

particular initial level of government assets b̄ < 0. Furthermore, we are more

interested in the case in which government revenue needs are more acute

than that would imply.
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Benigno and Woodford (2003) propose an alternative way of dealing with

this problem, which is to use a second-order approximation to the aggregate-

supply relation to eliminate the linear terms in the quadratic welfare measure.

In the model that they consider, where taxes are lump-sum (and so do not

affect the aggregate supply relation), a forward-integrated second-order ap-

proximation to this relation allows one to express the expected discounted

value of output terms ΦŶt as a function of purely quadratic terms (except for

certain transitory terms that do not affect the “stage two” policy problem).

In the present case, the level of distorting taxes has a first-order effect on the

aggregate-supply relation (see equation (3.6) below), so that the forward-

integrated relation involves the expected discounted value of the tax rate

as well as the expected discounted value of output. However, as shown in

the appendix, a second-order approximation to the intertemporal solvency

condition (2.15)18 provides another relation between the expected discounted

values of output and the tax rate and a set of purely quadratic terms. These

two second-order approximations to the structural equations that appear as

constraints in our policy problem can then be used to express the expected

discounted value of output terms in (3.2) in terms of purely quadratic terms.

In this manner, we can rewrite (3.2) as

Ut0 = −ΩEt0

∞∑
t=t0

βt−t0

{
1

2
qy(Ŷt − Ŷ ∗

t )2 +
1

2
qππ2

t

}
+ Tt0 + t.i.p. +O(||ξ||3),

(3.3)

where again the coefficients are defined in the appendix. The expression

Ŷ ∗
t indicates a function of the vector of exogenous disturbances ξt defined

in the appendix, while Tt0 is a transitory component. In the case that the

alternative policies from date t0 onward to be evaluated must be consistent

with a vector of prior commitments Xt0 , one can show that the value of

the term Tt0 is implied (to a second-order approximation) by the value of

Xt0 . Hence for purposes of characterizing optimal policy from a timeless

18Since we are interested in providing an approximate characterization of the “stage
two” policy problem, in which a precommitted value of Wt appears as a constraint, it
is actually a second-order approximation to that constraint that we need. However, this
latter constraint has the same form as (2.15); the difference is only in which quantities in
the relation are taken to have predetermined values.
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perspective, it suffices that we rank policies according to the value that they

imply for the loss function

Et0

∞∑
t=t0

βt−t0

{
1

2
qy(Ŷt − Ŷ ∗

t )2 +
1

2
qππ2

t

}
, (3.4)

where a lower value of (3.4) implies a higher value of (3.3). Because this

loss function is purely quadratic (i.e., lacking linear terms), it is possible

to evaluate it to second order using only a first-order approximation to the

equilibrium evolution of inflation and output under a given policy. Hence

log-linear approximations to the structural relations of our model suffice,

yielding a standard linear-quadratic policy problem.

In order for this linear-quadratic problem to have a bounded solution

(which then approximates the solution to the exact problem), we must verify

that the quadratic objective (3.4) is convex. We show in the appendix that

qy, qπ > 0, so that the objective is convex, as long as the steady-state tax rate

τ̄ and share of government purchases sG in the national product are below

certain positive bounds. We shall here assume that these conditions are sat-

isfied, i.e., that the government’s fiscal needs are not too severe. Note that

in this case, our quadratic objective turns out to be of a form commonly as-

sumed in the literature on monetary policy evaluation; that is, policy should

seek to minimize the discounted value of a weighted sum of squared devia-

tions of inflation from an optimal level (here zero) and squared fluctuations

in an “output gap” yt ≡ Ŷt − Ŷ ∗
t , where the target output level Ŷ ∗

t depends

on the various exogenous disturbances in a way discussed in the appendix.

It is also perhaps of interest to note that a “tax smoothing” objective of the

kind postulated by Barro (1979) and Bohn (1990) does not appear in our

welfare measure as a separate objective. Instead, tax distortions are relevant

only insofar as they result in “output gaps” of the same sort that monetary

stabilization policy aims to minimize.

We turn next to the form of the log-linear constraints in the approximate

policy problem. A first-order Taylor series expansion of (2.11) around the

zero-inflation steady state yields the log-linear aggregate-supply relation

πt = κ[Ŷt + ψτ̂t + c′ξξt] + βEtπt+1, (3.5)
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for certain coefficients κ, ψ > 0. This is the familiar “New Keynesian Phillips

curve” relation,19 extended here to take account of the effects of variations

in the level of distorting taxes on supply costs.

It is useful to write this approximate aggregate-supply relation in terms

of the welfare-relevant output gap yt. Equation (3.5) can be equivalently be

written as

πt = κ[yt + ψτ̂t + ut] + βEtπt+1, (3.6)

where ut is composite “cost-push” disturbance, indicating the degree to which

the various exogenous disturbances included in ξt preclude simultaneous sta-

bilization of inflation, the welfare-relevant output gap, and the tax rate.

Alternatively we can write

πt = κ[yt + ψ(τ̂t − τ̂ ∗t )] + βEtπt+1, (3.7)

where τ̂ ∗t ≡ −ψ−1ut indicates the tax change needed at any time to offset

the“cost-push” shock, in order to allow simultaneous stabilization of inflation

and the output gap (the two stabilization objectives reflected in (3.4)).

The effects of the various exogenous disturbances in ξt on the “cost-push”

term ut are explained in the appendix. It is worth noting that under certain

conditions ut is unaffected by some disturbances. In the case that Φ = 0, the

cost-push term is given by

ut = uξ5µ̂
w
t , (3.8)

where in this case, uξ5 = q−1
y > 0. Thus the cost-push term is affected only by

variations in the wage markup µ̂t; it does not vary in response to taste shocks,

technology shocks, government purchases, or variations in government trans-

fers. The reason is that when Φ = 0 and neither taxes nor the wage markup

vary from their steady-state values, the flexible-price equilibrium is efficient;

it follows that level of output consistent with zero inflation is also the one

that maximizes welfare, as discussed in Woodford (2003, chapter 6).

Even when Φ > 0, if there are no government purchases (so that sG =

0) and no fiscal shocks (meaning that Ĝt = 0 and ζ̂t = 0), then the ut

term is again of the form (3.8), but with uξ5 = (1 − Φ)q−1
y , as discussed in

Benigno and Woodford (2003). Hence in this case neither taste or technology

19See, e.g., Clarida et al. (1999) or Woodford (2003, chapter 3).
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shocks have “cost-push” effects. The reason is that in this “isoelastic” case,

if neither taxes nor the wage markup ever vary, the flexible-price equilibrium

value of output and the efficient level vary in exactly the same proportion

in response to each of the other types of shocks; hence inflation stabilization

also stabilizes the gap between actual output and the efficient level. Another

special case is the limiting case of linear utility of consumption (σ−1 = 0); in

this case, ut is again of the form (3.8), for a different value of uξ5. In general,

however, when Φ > 0 and sG > 0, all of the disturbances shift the flexible-

price equilibrium level of output (under a constant tax rate) and the efficient

level of output to differing extents, resulting in “cost-push” contributions

from all of these shocks.

The other constraint on possible equilibrium paths is the intertemporal

government solvency condition. A log-linear approximation to (2.15) can be

written in the form

b̂t−1 − πt − σ−1yt = −ft + (1− β)Et

∞∑
T=t

βT−t[byyT + bτ (τ̂T − τ̂ ∗T )], (3.9)

where σ > 0 is the intertemporal elasticity of substitution of private ex-

penditure, and the coefficients by, bτ are defined in the appendix, as is ft, a

composite measure of exogenous “fiscal stress.” Here we have written the

solvency condition in terms of the same output gap and “tax gap” as equa-

tion (3.7), to make clear the extent to which complete stabilization of the

variables appearing in the loss function (3.4) is possible. The constraint can

also be written in a “flow” form,

b̂t−1−πt−σ−1yt+ft = (1−β)[byyt+bτ (τ̂t−τ̂ ∗t )]+βEt[b̂t−πt+1−σ−1yt+1+ft+1],

(3.10)

together with a transversality condition.20

We note that the only reason why it should not be possible to completely

stabilize both inflation and the output gap from some date t onward is if the

sum b̂t−1 +ft is non-zero. The composite disturbance ft therefore completely

summarizes the information at date t about the exogenous disturbances that

20If we restrict attention to bounded paths for the endogenous variables, then a path
satisfies (3.9) in each period t ≥ t0 if and only if it satisfies the flow budget constraint
(3.10) in each period.
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determines the degree to which stabilization of inflation and output is not

possible; and under an optimal policy, the state-contingent evolution of the

inflation rate, the output gap, and the real public debt depend solely on the

evolution of the single composite disturbance process {ft}.
This result contrasts with the standard literature on optimal monetary

stabilization policy, in which (in the absence of a motive for interest-rate

stabilization, as here) it is instead the cost-push term ut that summarizes the

extent to which exogenous disturbances require that fluctuations in inflation

and in the output gap should occur. Note that in the case that there are no

government purchases and no fiscal shocks, ut corresponds simply to (3.8).

Thus, for example, it is concluded (in a model with lump-sum taxes) that

there should be no variation in inflation in response to a technology shock

(Khan et al., 2002; Benigno and Woodford, 2003). But even in this simple

case, the fiscal stress is given by an expression of the form

ft ≡ h′ξξt − (1− β)Et

∞∑
T=t

βT−tf ′ξξT , (3.11)

where the expressions h′ξξt and f ′ξξt both generally include non-zero coeffi-

cients on preference and technology shocks, in addition to the markup shock,

as shown in the appendix. Hence many disturbances that do not have cost-

push effects nonetheless result in optimal variations in both inflation and the

output gap.

Finally, we wish to consider optimal policy subject to the constraints

that Ft0 , Kt0 and Wt0 take given (precommitted) values. Again, only log-

linear approximations to these constraints matter for a log-linear approxi-

mate characterization of optimal policy. As discussed in the appendix, the

corresponding constraints in our approximate model are precommitments

regarding the state-contingent values of πt0 and yt0 .

To summarize, our approximate policy problem involves the choice of

state-contingent paths for the endogenous variables {πt, yt, τ̂t, b̂t} from some

date t0 onward so as to minimize the quadratic loss function (3.4), subject

to the constraint that conditions (3.7) and (3.9) be satisfied each period,

given an initial value b̂t0−1 and subject also to the constraints that πt0 and

yt0 equal certain precommitted values (that may depend on the state of the
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world in period t0). We shall first characterize the state-contingent evolu-

tion of the endogenous variables in response to exogenous shocks, in the

rational-expectations equilibrium that solves this problem. We then turn to

the derivation of optimal policy rules, commitment to which should imple-

ment an equilibrium of this kind.

4 Optimal Responses to Shocks: The Case of

Flexible Prices

In considering the solution to the problem of stabilization policy just posed,

it may be useful to first consider the simple case in which prices are fully

flexible. This is the limiting case of our model in which α = 0, with the

consequence that qπ = 0 in (3.4), and that κ−1 = 0 in (3.7). Hence our

optimization problem reduces to the minimization of

1

2
qyEt0

∞∑
t=t0

βt−t0y2
t (4.1)

subject to the constraints

yt + ψ(τ̂t − τ̂ ∗t ) = 0 (4.2)

and (3.9). It is easily seen that in this case, the optimal policy is one that

achieves yt = 0 at all times. Because of (4.2), this requires that τ̂t = τ̂ ∗t
at all times. The inflation rate is then determined by the requirement of

government intertemporal solvency,

πt = b̂t−1 + ft.

This last equation implies that unexpected inflation must equal the inno-

vation in the fiscal stress,

πt − Et−1πt = ft − Et−1ft.

Expected inflation, and hence the evolution of nominal government debt, are

indeterminate. If we add to our assumed policy objective a small preference
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for inflation stabilization, when this has no cost in terms of other objectives,21

then the optimal policy will be one that involves Etπt+1 = 0 each period, so

that the nominal public debt must evolve according to

b̂t = −Etft+1.

If, instead, we were to assume the existence of small monetary frictions (and

zero interest on money), the tie would be broken by the requirement that the

nominal interest rate equal zero each period.22 The required expected rate of

inflation (and hence the required evolution of the nominal public debt) would

then be determined by the variation in the equilibrium real rate of return

implied by a real allocation in which Ŷt = Ŷ ∗
t each period. That is, one

would have Etπt+1 = −r∗t , where r∗t is the (exogenous) real rate of interest

associated output at the target level each period, and so

b̂t = −r∗t − Etft+1.

We thus obtain simple conclusions about the determinants of fluctuations

in inflation, output and the tax rate under optimal policy. Unexpected in-

flation variations occur as needed in order to prevent taxes from ever having

to be varied in order to respond to variations in fiscal stress, as in the anal-

yses of Bohn (1990) and Chari and Kehoe (1999). This allows a model with

only riskless nominal government debt to achieve the same state-contingent

allocation of resources as the government would choose to bring about if it

21Note that this preference can be justified in terms of our model, in the case that α is
positive though extremely small. For there will then be a very small positive value for qπ,
implying that reduction of the expected discounted value of inflation is preferred to the
extent that this does not require any increase in the expected discounted value of squared
output gaps.

22The result relies upon the fact that the distortions created by the monetary frictions
are minimized in the case of a zero opportunity cost of holding money each period, as
argued by Friedman (1969). Neither the existence of effects of nominal interest rates on
supply costs (so that an interest-rate term should appear in the aggregate-supply relation
(4.2)) nor the contribution of seignorage revenues to the government budget constraint
make any difference to the result, since unexpected changes in revenue needs can always be
costlessly obtained through unexpected inflation, while any desired shifts in the aggregate-
supply relation to offset cost-push shocks can be achieved by varying the tax rate.
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were able to issue state-contingent debt, as in the model of Lucas and Stokey

(1983).

Because taxes do not have to adjust in response to variations in fiscal

stress, as in the tax-smoothing model of Barro (1979), it is possible to

“smooth” them across states as well as over time. However, the sense in

which it is desirable to “smooth” tax rates is that of minimizing variation

in the gap τ̂t − τ̂ ∗t , rather than variation in the tax rate itself.23 In other

words, it is really the “tax gap” τ̂t − τ̂ ∗t that should be smoothed. Under

certain special circumstances, it will not be optimal for tax rates to vary in

response to shocks; these are the conditions, discussed above, under which

shocks have no cost-push effects, so that there is no change in τ̂ ∗t . For ex-

ample, if there are no government purchases and there is no variation in the

wage markup, this will be the case. But more generally, all disturbances will

have some cost-push effect, and result in variations in τ̂ ∗t . There will then be

variations in the tax rate in response to these shocks under an optimal policy.

However, there will be no unit root in the tax rate, as in the Barro (1979)

model of optimal tax policy. Instead, as in the analysis of Lucas and Stokey

(1983), the optimal fluctuations in the tax rate will be stationary, and will

have the same persistence properties as the real disturbances (specifically,

the persistence properties of the composite cost-push shock).

Variations in fiscal stress will instead require changes in the tax rate, as

in the analysis of Barro (1979), if we suppose that the government issues

only riskless indexed debt, rather than the riskless nominal debt assumed in

our baseline model. (Again, for simplicity we assume that only one-period

riskless debt is issued.) In this case the objective function (3.4) and the

constraints (3.9) and (4.2) remain the same, but b
¯

t−1 ≡ b̂t−1 − πt, the real

value of private claims on the government at the beginning of period t, is now

23A number of authors (e.g., Chari et al., 1991, 1994; Hall and Krieger, 2000; Aiyagari
et al., 2002) have found that in calibrated flexible-price models with state-contingent
government debt, the optimal variation in labor tax rates is quite small. Our results
indicate this as well, in the case that real disturbances have only small cost-push effects,
and we have listed earlier various conditions under which this will be the case. But under
some circumstances, optimal policy may involve substantial volatility of the tax rate, and
indeed, more volatility of the tax rate than of inflation. This would be the case if shocks
occur that have large cost-push effects while having relatively little effect on fiscal stress.
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a predetermined variable. This means that unexpected inflation variations

are no longer able to relax the intertemporal government solvency condition.

In fact, rewriting the constraint (3.9) in terms of b
¯t−1, we see that the path

of inflation is now completely irrelevant to welfare.

The solution to this optimization problem is now less trivial, as com-

plete stabilization of the output gap is not generally possible. The optimal

state-contingent evolution of output and taxes can be determined using a

Lagrangian method, as in Woodford (2003, chapter 7). The Lagrangian for

the present problem can be written as

Lt0 = Et0

∞∑
t=t0

βt−t0{1

2
qyy

2
t + ϕ1t[yt + ψτ̂t] + ϕ2t[(b

¯t−1 − σ−1yt)

−(1− β)(byyt + bτ τ̂t)− β(b
¯t − σ−1yt+1)]}+ σϕ2,t0−1yt0 , (4.3)

where ϕ1t, ϕ2t are Lagrange multipliers associated with constraints (4.2) and

(3.10) respectively,24 for each t ≥ t0, and σϕ2,t0−1 is the notation used for the

multiplier associated with the additional constraint that yt0 = ȳt0 . The latter

constraint is added in order to characterize optimal policy from a timeless

perspective, as discussed at the end of section 2; the particular notation used

for the multiplier on this constraint results in a time-invariant form for the

first-order conditions, as seen below.25 We have dropped terms from the

Lagrangian that are not functions of the endogenous variables yt and τ̂t, i.e.,

products of multipliers and exogenous disturbances, as these do not affect

our calculation of the implied first-order conditions.

The resulting first-order condition with respect to yt is

qyyt = −ϕ1t + [(1− β)by + σ−1]ϕ2t − σ−1ϕ2,t−1; (4.4)

that with respect to τ̂t is

ψϕ1t = (1− β)bτϕ2t; (4.5)

24Alternatively, ϕ2t is the multiplier associated with constraint (3.9).
25It should be recalled that in order for policy to be optimal from a timeless perspective,

the state-contingent initial commitment ȳt0 must be chosen in a way that conforms to the
state-contingent commitment regarding yt that will be chosen in all later periods, so that
the optimal policy can be implemented by a time-invariant rule. Hence it is convenient to
present the first-order conditions in a time-invariant form.
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and that with respect to b
¯

t is

ϕ2t = Etϕ2,t+1. (4.6)

Each of these conditions must be satisfied for each t ≥ t0, along with the

structural equations (4.2) and (3.9) for each t ≥ t0, for given initial values

b
¯t0−1 and yt0 . We look for a bounded solution to these equations, so that (in

the event of small enough disturbances) none of the state variables leave a

neighborhood of the steady-state values, in which our local approximation

to the equilibrium conditions and our welfare objective remain accurate.26

Given the existence of such a bounded solution, the transversality condition

is necessarily satisfied, so that the solution to these first-order conditions

represents an optimal plan.

An analytical solution to these equations is easily given. Using equation

(4.2) to substitute for τ̂t in the forward-integrated version of (3.9), then

equations (4.4) and (4.5) to substitute for yt as a function of the path of ϕ2t,

and finally using (4.6) to replace all terms of the form Etϕ2,t+j (for j ≥ 0)

by ϕ2t, we obtain an equation that can be solved for ϕ2t. The solution is of

the form

ϕ2t =
mb

mb + nb

ϕ2,t−1 − 1

mb + nb

[ft + b
¯t−1],

coefficients mb, nb are defined in the appendix. The implied dynamics of the

government debt are then given by

b
¯t = −Etft+1 − nbϕ2t.

This allows a complete solution for the evolution of government debt and the

multiplier, given the composite exogenous disturbance process {ft}, starting

26In the only such solution, the variables τ̂t , b
¯t and yt are all permanently affected

by shocks, even when the disturbances are all assumed to be stationary (and bounded)
processes. Hence a bounded solution exists only under the assumption that random distur-
bances occur only in a finite number of periods. However, our characterization of optimal
policy does not depend on a particular bound on the number of periods in which there are
disturbances, or which periods these are; in order to allow disturbances in a larger number
of periods, we must assume a tighter bound on the amplitude of disturbances, in order
for the optimal paths of the endogenous variables to remain within a given neighborhood
of the steady-state values. Aiyagari et al. (2002) discuss the asymptotic behavior of the
optimal plan in the exact nonlinear version of a problem similar to this one, in the case
that disturbances occur indefinitely.
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from initial conditions b
¯t0−1 and ϕ2,t0−1.

27 Given these solutions, the optimal

evolution of the output gap and tax rate are given by

yt = mϕϕ2t + nϕϕ2,t−1,

τ̂t = τ̂ ∗t − ψ−1yt,

where mϕ, nϕ are again defined in the appendix. The evolution of inflation

remains indeterminate. If we again assume a preference for inflation stabi-

lization when it is costless, optimal policy involves πt = 0 at all times.

In this case, unlike that of nominal debt, inflation is not affected by a pure

fiscal shock (or indeed any other shock) under the optimal policy, but instead

the output gap and the tax rate are. Note also that in the above solution, the

multiplier ϕ2t, the output gap, and the tax rate all follow unit root processes:

a temporary disturbance to the fiscal stress permanently changes the level

of each of these variables, as in the analysis of the optimal dynamics of the

tax rate in Barro (1979) and Bohn (1990). However, the optimal evolution

of the tax rate is not in general a pure random walk as in the analysis of

Barro and Bohn. Instead, the tax gap is an IMA(1,1) process, as in the local

analysis of Aiyagari et al. (2002); the optimal tax rate τ̂t may have more

complex dynamics, in the case that τ̂ ∗t exhibits stationary fluctuations. In

the special case of linear utility (σ−1 = 0), nϕ = 0, and both the output

gap and the tax gap follow random walks (as both co-move with ϕ2t). If the

only disturbances are fiscal disturbances (Ĝt and ζ̂t), then there are also no

fluctuations in τ̂ ∗t in this case, so that the optimal tax rate follows a random

walk.

More generally, we observe that optimal policy “smooths” ϕ2t, the value

(in units of marginal utility) of additional government revenue in period t, so

that it follows a random walk. This is the proper generalization of the Barro

tax-smoothing result, though it only implies smoothing of tax rates in fairly

special cases. We find a similar result in the case that prices are sticky, even

when government debt is not indexed, as we now show.

27The initial condition for ϕ2,t0−1 is in turn chosen so that the solution obtained is
consistent with the initial constraint yt0 = ȳt0 . Under policy that is optimal from a time-
less perspective, this initial commitment is in turn chosen in a self-consistent fashion, as
discussed further in section 5. Note that the specification of ϕ2,t0−1 does not affect our
conclusions about the optimal responses to shocks, emphasized in this section.
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5 Optimal Responses to Shocks: The Case of

Sticky Prices

We turn now to the characterization of the optimal responses to shocks in

the case that prices are sticky (α > 0). The optimization problem that

provides a first-order characterization of optimal responses in this case is

that of choosing processes {πt, yt, τ̂t, b̂t} from date t0 onward to minimize

(3.4), subject to the constraints (3.7) and (3.9) for each t ≥ t0, together with

initial constraints of the form

πt0 = π̄t0 , yt0 = ȳt0 ,

given the initial condition b̂t0−1 and the exogenous evolution of the composite

disturbances {τ̂ ∗t , ft}. The Lagrangian for this problem can be written as

Lt0 = Et0

∞∑
t=t0

βt−t0{1

2
qyy

2
t +

1

2
qππ2

t + ϕ1t[−κ−1πt + yt + ψτ̂t + κ−1βπt+1] +

+ϕ2t[b̂t−1 − πt − σ−1yt − (1− β)(byyt + bτ τ̂t)− β(b̂t − πt+1 − σ−1yt+1)]}
+[κ−1ϕ1,t0−1 + ϕ2,t0−1]πt0 + σ−1ϕ2,t0yt0 ,

by analogy with (4.3).

The first-order condition with respect to πt is given by

qππt = κ−1(ϕ1t − ϕ1,t−1) + (ϕ2t − ϕ2,t−1); (5.1)

that with respect to yt is given by

qyyt = −ϕ1t + [(1− β)by + σ−1]ϕ2t − σ−1ϕ2,t−1; (5.2)

that with respect to τ̂t is given by

ψϕ1t = (1− β)bτϕ2t; (5.3)

and finally that with respect to b̂t is given by

ϕ2t = Etϕ2,t+1. (5.4)

These together with the two structural equations and the initial conditions

are to be solved for the state-contingent paths of {πt, Ŷt, τt, b̂t, ϕ1t, ϕ2t}. Note
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that the last three first order conditions are the same as for the flexible-price

model with indexed debt; the first condition (5.1) replaces the previous re-

quirement that πt = 0. Hence the solution obtained in the previous section

corresponds to a limiting case of this problem, in which qπ is made unbound-

edly large; for this reason the discussion above of the more familiar case with

flexible prices and riskless indexed government debt provides insight into the

character of optimal policy in the present case as well.

In the unique bounded solution to these equations, the dynamics of gov-

ernment debt and of the shadow value of government revenue ϕ2t are again

of the form

ϕ2t =
m̃b

m̃b + nb

ϕ2,t−1 − 1

m̃b + nb

[ft + b̂t−1],

b̂t = −Etft+1 − nbϕ2t,

though the coefficient m̃b now differs from mb, in a way also described in the

appendix. The implied dynamics of inflation and output gap are then given

by

πt = −ωϕ(ϕ2t − ϕ2,t−1), (5.5)

yt = mϕϕ2t + nϕϕ2,t−1, (5.6)

where mϕ, nϕ are defined as before, and ωϕ is defined in the appendix. The

optimal dynamics of the tax rate are those required to make these inflation

and output-gap dynamics consistent with the aggregate-supply relation (3.7).

Once again, the optimal dynamics of inflation, the output gap, and the pub-

lic debt depend only on the evolution of the fiscal stress variable {ft}; the

dynamics of the tax rate also depend on the evolution of {τ̂ ∗t }.
We now discuss the optimal response of the variables to a disturbance to

the level of fiscal stress. The laws of motion just derived for government debt

and the Lagrange multiplier imply that temporary disturbances to the level

of fiscal stress cause a permanent change in the level of both the Lagrange

multiplier and the public debt. This then implies a permanent change in the

level of output as well, which in turn requires (since inflation is stationary) a

permanent change in the level of the tax rate. Since inflation is proportional

to the change in the Lagrange multiplier, the price level moves in proportion

to the multiplier, which means a temporary disturbance to the fiscal stress
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Figure 1: Impulse response of the public debt to a pure fiscal shock, for

alternative degrees of price stickiness.

results in a permanent change in the price level, as in the flexible-price case

analyzed in the previous section. Thus in this case, the price level, output

gap, government debt, and tax rate all have unit roots, combining features

of the two special cases considered in the previous section.28 Both price

level and ϕ2t are random walks. They jump immediately to new permanent

level in response to change in fiscal stress. In the case of purely transitory

(white noise) disturbances, government debt also jumps immediately to a

new permanent level. Given the dynamics of the price level and government

debt, the dynamics of output and tax rate then jointly determined by the

aggregate-supply relation and the government budget constraint.

We further find that the degree to which fiscal stress is relieved by a

28Schmitt-Grohé and Uribe (2001) similarly observe that in a model with sticky prices,
the optimal response of the tax rate is similar to what would be optimal in a flexible-price
model with riskless indexed government debt.
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Figure 2: Impulse response of the tax rate to a pure fiscal shock.

price-level jump (as in the flexible-price, nominal-debt case) as opposed to

an increase in government debt and hence a permanently higher tax rate

(as in the flexible-price, indexed-debt case) depends on the degree of price

stickiness. We illustrate this with a numerical example. We calibrate a

quarterly model by assuming that β = 0.99, ω = 0.473, σ−1 = 0.157, and κ =

0.0236, in accordance with the estimates of Rotemberg and Woodford (1997).

We furthermore assume an elasticity of substitution among alternative goods

of θ = 10, an overall level of steady-state distortions Φ = 1/3, a steady-state

tax rate of τ̄ = 0.2, and a steady-state debt level b̄/Ȳ = 2.4 (debt equal

to 60 percent of a year’s GDP). Given the assumed degree of market power

of producers (a steady-state gross price markup of 1.11) and the assumed

size of the tax wedge, the value Φ = 1/3 corresponds to a steady-state wage

markup of µ̄w = 1.08. If we assume that there are no government transfers in

the steady state, then the assumed level of tax revenues net of debt service

would finance steady-state government purchases equal to a share sG = 0.176
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Figure 3: Impulse response of the inflation rate to a pure fiscal shock.

Let us suppose that the economy is disturbed by an exogenous increase in

transfer programs ζ̂t, equal to one percent of aggregate output, and expected

to last only for the current quarter. Figure 1 shows the optimal impulse

response of the government debt b̂t to this shock (where quarter zero is the

quarter of the shock), for each of 7 different values for κ, the slope of the

short-run aggregate-supply relation, maintaining the values just stated for

the other parameters of the model. The solid line indicates the optimal

response in the case of our baseline value for κ, based on the estimates of

Rotemberg and Woodford; the other cases represent progressively greater

degrees of price flexibility, up to the limiting case of fully flexible prices (the

case κ = ∞). Figures 2 and 3 similarly show the optimal responses of the

tax rate and the inflation rate to the same disturbance, for each of the same
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7 cases.29

29In figure 1, a response of 1 means a one percent increase in the value of bt, from 60
percent to 60.6 percent of a year’s GDP. In figure 2, a response of 1 means a one percent
decrease in τt, from 20 percent to 20.2 percent. In figure 3, a response of 1 means a one
percent per annum increase in the inflation rate, or an increase of the price level from 1
to 1.0025 over the course of a quarter (given that our model is quarterly). The responses
reported in Table 1 are measured in the same way.



Table 1: Immediate responses for alternative degrees of price stickiness.

κ T τ̂∞ π0

.024 29 .072 .021

.05 20 .076 .024

.10 14 .077 .030

.25 9 .078 .044

1.0 5.4 .075 .113

25 2.4 .032 .998

∞ 0 0 1.651

We see that the volatility of both inflation and tax rates under optimal

policy depends greatly on the degree of stickiness of prices. Table 1 reports

the initial quarter’s response of the inflation rate, and the long-run response

of the tax rate, for each of the 7 cases. The table also indicates for each case

the implied average time (in weeks) between price changes, T ≡ (− log α)−1,

where 0 < α < 1 is the fraction of prices unchanged for an entire quarter im-

plied by the assumed value of κ.30 We first note that our baseline calibration

implies that price changes occur only slightly less frequently than twice per

year, which is consistent with survey evidence.31 Next, we observe that even

were we to assume an aggregate-supply relation several times as steep as the

30We have used the relation between α and T for a continuous-time version of the Calvo
model in order to express the degree of price stickiness in terms of an average time between
price changes.

31The indicated average time between price changes for the baseline case is shorter than
that reported in Rotemberg and Woodford (1997), both because we here assume a slightly
larger value of θ, implying a smaller value of α, and because of the continuous-time method
used here to convert α into an implied average time interval.
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one estimated using U.S. data, our conclusions with regard to the size of the

optimal responses of the (long-run) tax rate and the inflation rate would be

fairly similar. At the same time, the optimal responses with fully flexible

prices are quite different: the response of inflation is 80 times as large as

under the baseline sticky-price calibration (implying a variance of inflation

6400 times as large), while the long-run tax rate does not respond at all in

the flexible-price case.32 But even a small degree of stickiness of prices makes

a dramatic difference in the optimal responses; for example, if prices are re-

vised only every five weeks on average, the variance of inflation is reduced

by a factor of more than 200, while the optimal response of the long-run

tax rate to the increased revenue need is nearly the same size as under the

baseline degree of price stickiness. Thus we find, as do Schmitt-Grohé and

Uribe (2001) in the context of a calibrated model with convex costs of price

adjustment, that the conclusions of the flexible-price analysis are quite mis-

leading if prices are even slightly sticky. Under a realistic calibration of the

degree of price stickiness, inflation should be quite stable, even in response

to disturbances with substantial consequences for the government’s budget

constraint, while tax rates should instead respond substantially (and with a

unit root) to variations in fiscal stress.

We can also compare our results with those that arise when taxes are

lump-sum. In this case, ψ = 0, and the first-order condition (5.3) requires

that ϕ2t = 0. The remaining first-order conditions reduce to

qππt = κ−1(ϕ1t − ϕ1,t−1),

qyyt = −ϕ1t

for each t ≥ t0 as in Clarida et al. (1999) and Woodford (2003, chapter 7).

In this case the fiscal stress is no longer relevant for inflation or output-gap

32The tax rate does respond in the quarter of the shock in the case of flexible prices,
but with the opposite sign to that associated with optimal policy under our baseline
calibration. Under flexible prices, as discussed above, the tax rate does not respond to
variations in fiscal stress at all. Because the increase in government transfers raises the
optimal level of output Ŷ ∗

0 , for reasons explained in the appendix, the optimal tax rate τ̂∗0
actually falls, in order to induce equilibrium output to increase; and under flexible prices,
this is the optimal response of τ̂0.
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determination. Instead, only the cost-push shock ut is responsible for incom-

plete stabilization. The determinants of the cost-push effects of underlying

disturbances, and of the target output level Ŷ ∗
t are also somewhat different,

because in this case ϑ1 = 0. For example, a pure fiscal shock has no cost-push

effect, nor any effect on Ŷ ∗
t , and hence no effect on the optimal evolution of

either inflation or output.33 Furthermore, as shown in the references just

mentioned, the price level no longer follows a random walk; instead, it is a

stationary variable. Increases in the price level due to a cost-push shock are

subsequently undone by period of deflation.

Note that the familiar case from the literature on monetary stabilization

policy does not result simply from assuming that sources of revenue that do

not shift the aggregate-supply relation are available; it is also important that

the sort of tax that does shift the AS relation (like the sales tax here) is not

available. We could nest both the standard model and our present baseline

case within a single, more general framework by assuming that revenue can

be raised using either the sales tax or a lump-sum tax, but that there is an

additional convex cost (perhaps representing “collection costs”, assumed to

reduce the utility of the representative household but not using real resources)

of increases in either tax rate. The standard case would then appear as the

limiting case of this model in which the collection costs associated with the

sales tax are infinite, while those associated with the lump-sum tax are zero;

the baseline model here would correspond to an alternative limiting case

in which the collection costs associated with the lump-sum tax are infinite,

while those associated with the sales tax are zero. In intermediate cases, we

would continue to find that fiscal stress affects the optimal evolution of both

inflation and the output gap, as long as there is a positive collection cost for

the lump-sum tax. At the same time, the result that the shadow value of

additional government revenue follows a random walk under optimal policy

(which would still be true) will not in general imply, as it does here, that

the price level should also be a random walk; for the perfect co-movement

of ϕ1t and ϕ2t that characterizes optimal policy in our baseline case will not

be implied by the first-order conditions except in the case that there are no

33See Benigno and Woodford (2003) for detailed analysis of the determinants of ut and
Ŷ ∗

t in this case.
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collection costs associated with the sales tax. Nonetheless, the price level

will generally contain a unit root under optimal policy, even if it will not

generally follow a random walk.

We also obtain results more similar to those in the standard literature

on monetary stabilization policy if we assume (realistically) that it is not

possible to adjust tax rates on such short notice in response to shocks as

is possible with monetary policy. As a simple way of introducing delays in

the adjustment of tax policy, suppose that the tax rate τt has to be fixed in

period t − d. In this case, the first-order conditions characterizing optimal

responses to shocks are the same as above, except that (5.3) is replaced by

ψEtϕ1,t+d = (1− β)bτEtϕ2,t+d (5.7)

for each t ≥ t0. In this case, the first-order conditions imply that Etπt+d+1 =

0, but no longer imply that changes in the price level must be unforecastable

from one period to the next. As a result, price-level increases in response to

disturbances are typically partially, but not completely, undone in subsequent

periods. Yet there continues to be a unit root in the price level (of at least

a small innovation variance), even in the case of an arbitrarily long delay d

in the adjustment of tax rates.

6 Optimal Targeting Rules for Monetary and

Fiscal Policy

We now wish to characterize the policy rules that the monetary and fiscal

authorities can follow in order to bring about the state-contingent responses

to shocks described in the previous section. One might think that it suffices

to solve for the optimal state-contingent paths for the policy instruments.

But in general this is not a desirable approach to the specification of a policy

rule, as discussed in Svensson (2003) and Woodford (2003, chapter 7). A

description of optimal policy in these terms would require enumeration of

all of the types of shocks that might be encountered later, indefinitely far

in the future, which is not feasible in practice. A commitment to a state-

contingent instrument path, even when possible, also may not determine the
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optimal equilibrium as the locally unique rational-expectations equilibrium

consistent with this policy; many other (much less desirable) equilibria may

also be consistent with the same state-contingent instrument path.

Instead, we here specify targeting rules in the sense of Svensson (1999,

2003) and Giannoni and Woodford (2003). These targeting rules are commit-

ments on the part of the policy authorities to adjust their respective instru-

ments so as to ensure that the projected paths of the endogenous variables

satisfy certain target criteria. We show that under an appropriate choice of

these target criteria, a commitment to ensure that they hold at all times will

determine a unique non-explosive rational-expectations equilibrium, in which

the state-contingent evolution of inflation, output and the tax rate solves the

optimization problem discussed in the previous section. Moreover, we show

that it is possible to obtain a specification of the policy rules that is robust

to alternative specifications of the exogenous shock processes.

We apply the general approach of Giannoni and Woodford (2002), which

allows the derivation of optimal target criteria with the properties just stated.

In addition, Giannoni and Woodford show that such target criteria can be

formulated that refer only to the projected paths of the target variables (the

ones in terms of which the stabilization objectives of policy are defined —

here, inflation and the output gap). Briefly, the method involves constructing

the target criteria by eliminating the Lagrange multipliers from the system

of the system of first-order conditions that characterize the optimal state-

contingent evolution, regardless of character of the (additive) disturbances.

We are left with linear relations among the target variables, that do not

involve the disturbances and with coefficients independent of the specification

of the disturbances, that represent the desired target criteria.

Recall that the first-order conditions that characterize the optimal state-

contingent paths in the problem considered in the previous section are given

by (5.1) – (5.4). As explained in the previous section, the first three of

these conditions imply that the evolution of inflation and of the output gap

must satisfy (5.5) – (5.6) each period. We can solve (5.5) – (5.6) for the

values of ϕ2t, ϕ2,t−1 implied by the values of πt, yt that are observed in an

optimal equilibrium. We can then replace ϕ2,t−1 in these two relations by

the multiplier implied in this way by observed values of πt−1, yt−1. Finally,
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we can eliminate ϕ2t from these two relations, to obtain a necessary relation

between πt and yt, given πt−1 and yt−1, given by

πt +
nϕ

mϕ

πt−1 +
ωϕ

mϕ

(yt − yt−1) = 0. (6.1)

This target criterion has the form of a “flexible inflation target,” similar to

the optimal target criterion for monetary policy in model with lump-sum

taxation (Woodford, 2003, chapter 7). It is interesting to note that, as in

all of the examples of optimal target criteria for monetary policy derived

under varying assumptions in Giannoni and Woodford (2003), it is only the

projected rate of change of the output gap that matters for determining the

appropriate adjustment of the near-term inflation target; the absolute level

of the output gap is irrelevant.

The remaining first-order condition from the previous section, not used in

the derivation of (6.1), is (5.4). By similarly using the solutions for ϕ2,t+1, ϕ2t

implied by observations of πt+1, yt+1 to substitute for the multipliers in this

condition, one obtains a further target criterion

Etπt+1 = 0 (6.2)

(Note that the fact that this always holds in the optimal equilibrium — i.e.,

that the price level must follow a random walk — has already been noted in

the previous section.) We show in the appendix that policies that ensure that

(6.1) – (6.2) hold for all t ≥ t0 determine a unique non-explosive rational-

expectations equilibrium.

Moreover, this equilibrium solves the above first-order conditions for a

particular specification of the initial lagged multipliers ϕ1,t0−1, ϕ2,t0−1, which

are inferred from the initial values πt0−1, yt0−1 in the way just explained.

Hence this equilibrium minimizes expected discounted losses (3.4) given b̂t0−1

and subject to constraints on initial outcomes of the form

πt0 = π̄(πt0−1, yt0−1), (6.3)

yt0 = ȳ(πt0−1, yt0−1). (6.4)

Furthermore, these constraints are self-consistent in the sense that the equi-

librium that solves this problem is one in which πt, yt are chosen to satisfy
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equations of this form in all periods t > t0. Hence these time-invariant policy

rules are optimal from a timeless perspective.34 And they are optimal re-

gardless of the specification of disturbance processes. Thus we have obtained

robustly optimal target criteria, as desired.

We have established a pair of target criteria with the property that if they

are expected to be jointly satisfied each period, the resulting equilibrium in-

volves the optimal responses to shocks. This result in itself, however, does

not establish which policy instrument should be used to ensure satisfaction

of which criterion. Since the variables referred to in both criteria can be

affected by both monetary and fiscal policy, there is not a uniquely appropri-

ate answer to that question. However, the following represents a relatively

simple example of a way in which such a regime could be institutionalized

through separate targeting procedures on the part of monetary and fiscal

authorities.

Let the central bank be assigned the task of maximizing social welfare

through its adjustment of the level of short-term interest rates, taking as

given the state-contingent evolution of the public debt {b̂t}, which depends

on the decisions of the fiscal authority. Thus the central bank treats the

evolution of the public debt as being outside its control, just like the exoge-

nous disturbances {ξt}, and simply seeks to forecast its evolution in order to

correctly model the constraints on its own policy. Here we do not propose a

regime under which it is actually true that the evolution of the public debt

would be unaffected by a change in monetary policy. But there is no in-

consistency in the central bank’s assumption (since a given bounded process

{b̂t} will continue to represent a feasible fiscal policy regardless of the policy

adopted by the central bank), and we shall show that the conduct of policy

under this assumption does not lead to a suboptimal outcome, as long as the

state-contingent evolution of the public debt is correctly forecasted by the

central bank.

The central bank then seeks to bring about paths for {πt, yt, τ̂t} from date

t0 onward that minimize (3.4), subject to the constraints (3.7) and (3.9) for

each t ≥ t0, together with initial constraints of the form (6.3) – (6.4), given

34See Woodford (2003, chapters 7, 8) for further discussion of the self-consistency con-
dition that the initial constraints are required to satisfy.

43
ECB

Working Paper Series No. 345
April 2004



the evolution of the processes {τ̂ ∗t , ft, b̂t}. The first-order conditions for this

optimization problem are given by (5.1), (5.2) and (5.4) each period, which in

turn imply that (6.1) must hold each period, as shown above. One can further

show that a commitment by the central bank to ensure that (6.1) holds each

period determines the equilibrium evolution that solves this problem, in the

case of an appropriate (self-consistent) choice of the initial constraints (6.3) –

(6.4). Thus (6.1) is an optimal target criterion for a policy authority seeking

to solve the kind of problem just posed; and since the problem takes as given

the evolution of the public debt, it is obviously a more suitable assignment

for the central bank than for the fiscal authority. The kind of interest-rate

reaction function that can be used to implement a “flexible inflation target”

of this kind is discussed in Svensson and Woodford (2003) and Woodford

(2003, chapter 7).

Correspondingly, let the fiscal authority be assigned the task of choos-

ing the level of government revenue each period that will maximize social

welfare, taking as given the state-contingent evolution of output {yt}, which

it regards as being determined by monetary policy. (Again, it need not re-

ally be the case that the central bank ensures a particular state-contingent

path of output, regardless of what the fiscal authority does. But again, this

assumption is not inconsistent with our model of the economy, since it is

possible for the central bank to bring about any bounded process {yt} that

it wishes, regardless of fiscal policy, in the case that prices are sticky.) If

the fiscal authority regards the evolution of output as outside its control, its

objective reduces to the minimization of

Et0

∞∑
t=t0

βt−t0π2
t . (6.5)

But this is a possible objective for fiscal policy, given the effects of tax policy

on inflation dynamics (when taxes are not lump-sum) indicated by (3.7).

Forward integration of (3.7) implies that

πt = κEt

∞∑
T=t

βT−tyT + κψEt

∞∑
T=t

βT−t(τ̂T − τ̂ ∗T ). (6.6)

Thus what matters about fiscal policy for current inflation determination is

the present value of expected tax rates; but this in turn is constrained by
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the intertemporal solvency condition (3.9). Using (3.9) to substitute for the

present value of taxes in (6.6), we obtain a relation of the form

πt = µ1[b̂t−1 − σ−1yt + ft] + µ2Et

∞∑
T=t

βT−tyT , (6.7)

for certain coefficients µ1, µ2 > 0 defined in the appendix. If the fiscal au-

thority takes the evolution of output as given, then this relation implies that

its policy in period t can have no effect on πt. However, it can affect inflation

in the following period through the effects the current government budget

on b̂t. Furthermore, since the choice of b̂t has no effect on inflation in later

periods (given that it places no constraint on the level of public debt that

may be chosen in later periods), b̂t should be chosen so as to minimize Etπ
2
t+1.

The first-order condition for the optimal choice of b̂t is then simply (6.2),

which we find is indeed a suitable target criterion for the fiscal authority.

The decision rule implied by this target criterion is seen to be

b̂t = −Etft+1 + σ−1Etyt+1 − (µ2/µ1)Et

∞∑
T=t+1

βT−t−1yT ,

which expresses the optimal level of government borrowing as a function of

the fiscal authority’s projections of the exogenous determinants of fiscal stress

and of future real activity. It is clearly possible for the fiscal authority to

implement this target criterion, and doing so leads to a determinate equi-

librium path for inflation, given the path of output. We thus obtain a pair

of targeting rules, one for the central bank and one for the fiscal authority,

that if both pursued will implement an equilibrium that is optimal from a

timeless perspective. Furthermore, each individual rule can be rationalized

as a solution to a constrained optimization problem that the particular policy

authority is assigned to solve.

7 Conclusion

We have shown that it is possible to jointly analyze optimal monetary and

fiscal policy within a single framework. The two problems, often considered in

isolation, turn out to be more closely related than might have been expected.
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In particular, we find that variations in the level of distorting taxes should

be chosen to serve the same objectives as those emphasized in the literature

on monetary stabilization policy: stabilization of inflation and of a (properly

defined) output gap. A single output gap can be defined that measures the

total distortion of the level of economic activity, resulting both from the

stickiness of prices (and the consequent variation in markups) and from the

supply-side effects of tax distortions. It is this cumulative gap that one wishes

to stabilize, rather than the individual components resulting from the two

sources; and both monetary policy and tax policy can be used to affect it.

Both monetary policy and tax policy also matter for inflation determination

in our model, because of the effects of the tax rate on real marginal cost and

hence on the aggregate-supply relation. Indeed, we have exhibited a pair

of robustly optimal targeting rules for the monetary and fiscal authorities

respectively, under which both authorities consider the consequences of their

actions for near-term inflation projections in determining how to adjust their

instruments.

And not only should the fiscal authority use tax policy to serve the tra-

ditional goals of monetary stabilization policy; we also find that the mon-

etary authority should take account of the consequences of its actions for

the government budget. In the present model, that abstracts entirely from

transactions frictions, these consequences have solely to do with the implica-

tions of alternative price-level and interest-rate paths for the real burden of

interest payments on the public debt, and not any contribution of seignor-

age to government revenues. Nonetheless, under a calibration of our model

that assumes a debt burden and a level of distorting taxes that would not

be unusual for an advanced industrial economy, taking account of the ex-

istence of a positive shadow value of additional government revenue (owing

to the non-existence of lump-sum taxes) makes a material difference for the

quantitative characterization of optimal monetary policy. In fact, we have

found that the crucial summary statistic that indicates the degree to which

various types of real disturbances should be allowed to affect short-run pro-

jections for either inflation or the output gap is not the degree to which these

disturbances shift the aggregate-supply curve for a given tax rate (i.e., the

extent to which they represent “cost-push” shocks), but rather the degree to
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which they create fiscal stress (shift the intertemporal government solvency

condition).

Our conclusion that monetary policy should take account of the require-

ments for government solvency does not imply anything as strong as the

result of Chari and Kehoe (1999) for a flexible-price economy with nominal

government debt, according to which surprise variations in the inflation rate

should be used to completely offset variations in fiscal stress, so that tax

rates need not vary (other than as necessary to stabilize the output gap).

We find that in the case of even a modest degree of price stickiness — much

less than what seems to be consistent with empirical evidence for the U.S. —

it is not optimal for inflation to respond to variations in fiscal stress by more

than a tiny fraction of the amount that would be required to eliminate the

fiscal stress (and that would be optimal with fully flexible prices); instead,

a substantial part of the adjustment should come through a change in the

tax rate. But the way in which the acceptable short-run inflation projection

should be affected by variations in the projected output gap is substantially

different in an economy with only distorting taxes than would be the case

in the presence of lump-sum taxation. For with distorting taxes, the avail-

able tradeoff between variations in inflation and in the output gap depends

not only on the way these variables are related to one another through the

aggregate-supply relation, but also on the way that each of them affects the

government budget.
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A Appendix

A.1 Derivation of the aggregate-supply relation (equa-

tion (2.11))

In this section, we derive equation (2.11) in the main text and we define the

variables Ft and Kt. In the Calvo model, a supplier that changes its price in

period t chooses a new price pt(i) to maximize

Et

{ ∞∑
T=t

αT−tQt,T Π(pt(i), p
j
T , PT ; YT , τT , ξT )

}
,

where αT−t is the probability that the price set at time t remains fixed in

period T , Qt,T is the stochastic discount factor given by (2.7), and the profit

function Π(·) is defined as

Π(p, pj, P ; Y, τ, ξ) ≡ (1−τ)pY (p/P )−θ−µw ṽh(f
−1(Y (pj/P )−θ/A); ξ)

ũc(Y −G; ξ)
P ·f−1(Y (p/P )−θ/A)

.

(A.8)

Here Dixit-Stiglitz monopolistic competition implies that the individual

supplier faces a demand curve each period of the form

yt(i) = Yt(pt(i)/Pt)
−θ,

so that after-tax sales revenues are the function of p given in the first term

on the right-hand side of (A.8). The second term indicates the nominal wage

bill, obtained by inverting the production function to obtain the required

labor input, and multiplying this by the industry wage for sector j. The

industry wage is obtained from the labor supply equation (2.8), under the

assumption that each of the firms in industry j (other than i, assumed to

have a negligible effect on industry labor demand) charges the common price

pj. (Because all firms in a given industry are assumed to adjust their prices

at the same time, in equilibrium the prices of firms in a given industry are

always identical. We must nonetheless define the profit function for the

case in which firm i deviates from the industry price, in order to determine

whether the industry price is optimal for each individual firm.)

We note that supplier i’s profits are a concave function of the quantity

sold yt(i), since revenues are proportional to y
θ−1

θ
t (i) and hence concave in

48
ECB
Working Paper Series No. 345
April 2004



yt(i), while costs are convex in yt(i). Moreover, since yt(i) is proportional to

pt(i)
−θ, the profit function is also concave in pt(i)

−θ. The first-order condition

for the optimal choice of the price pt(i) is the same as the one with respect to

pt(i)
−θ; hence the first-order condition with respect to pt(i) is both necessary

and sufficient for an optimum.

For this first-order condition, we obtain

Et

{ ∞∑
T=t

αT−tQt,T

(
pt(i)

PT

)−θ

YT ΨT (pt(i), p
j
t)

}
= 0,

with

ΨT (p, pj) ≡
[
(1− τT )− θ

θ − 1
µw

T

ṽh(f
−1(YT (pj/PT )−θ/AT ); ξT )

ũc(YT −GT ; ξT ) · AT f ′(f−1(YT (p/PT )−θ/AT ))

PT

p

]

Using the definitions

u(Yt; ξt) ≡ ũ(Yt −Gt; ξt),

v(yt(i); ξt) ≡ ṽ(f−1(yt(i)/At); ξt) = ṽ(Ht(i); ξt),

and noting that each firm in an industry will set the same price, so that

pt(i) = pj
t = p∗t , the common price of all goods with prices revised at date t,

we can rewrite the above first-order condition as

Et

{ ∞∑
T=t

(αβ)T−tQt,T

(
p∗t
PT

)−θ

YT

[
(1− τT )− θ

θ − 1
µw

T

vy(YT (p∗t /PT )−θ; ξT )

uc(YT ; ξT )

PT

p∗t

]}
= 0.

Substituting the equilibrium value for the discount factor, we finally obtain

Et

{ ∞∑
T=t

αT−tuc(YT ; ξT )

(
p∗t
PT

)−θ

YT

[
p∗t
PT

(1− τT )− θ

θ − 1
µw

T

vy(YT (p∗t /PT )−θ; ξT )

uc(YT ; ξT )

]}
= 0.

(A.9)

Using the isoelastic functional forms given in the text, we obtain a closed-

form solution to (A.9), given by

p∗t
Pt

=

(
Kt

Ft

) 1
1+ωθ

, (A.10)

where Ft and Kt are aggregate variables of the form

Ft ≡ Et

∞∑
T=t

(αβ)T−t(1− τT )f(YT ; ξT )

(
PT

Pt

)θ−1

, (A.11)
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Kt ≡ Et

∞∑
T=t

(αβ)T−tk(YT ; ξT )

(
PT

Pt

)θ(1+ω)

, (A.12)

in which expressions

f(Y ; ξ) ≡ uc(Y ; ξ)Y, (A.13)

k(Y ; ξ) ≡ θ

θ − 1
µwvy(Y ; ξ)Y, (A.14)

and where in the function k(·), the vector of shocks has been extended to

include the shock µw
t . Substitution of (A.10) into the law of motion for the

Dixit-Stiglitz price index

Pt =
[
(1− α)p∗1−θ

t + αP 1−θ
t−1

] 1
1−θ (A.15)

yields a short-run aggregate-supply relation between inflation and output of

the form (2.11) in the text.

A.2 Recursive formulation of the policy problem

Under the standard (Ramsey) approach to the characterization of an optimal

policy commitment, one chooses among state-contingent paths {Πt, Yt, τt, bt, ∆t}
from some initial date t0 onward that satisfy

1− αΠθ−1
t

1− α
=

(
Ft

Kt

) θ−1
1+ωθ

, (A.16)

∆t = h(∆t−1, Πt), (A.17)

bt−1
Pt−1

Pt

= Et

∞∑
T=t

Rt,T sT , (A.18)

where

st ≡ τtYt −Gt − ζt (A.19)

for each t ≥ t0, given initial government debt bt0−1 and price dispersion ∆t0−1,

so as to maximize

Ut0 = Et0

∞∑
t=t0

βt−t0U(Yt, ∆t; ξt). (A.20)
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Here we note that the definition (2.3) of the index of price dispersion implies

the law of motion

∆t = α∆t−1Π
θ(1+ω)
t + (1− α)

(
1− αΠθ−1

t

1− α

)− θ(1+ω)
1−θ

, (A.21)

which can be written in the form (A.17); this is the origin of that constraint.

We now show that the t0−optimal plan (Ramsey problem) can be ob-

tained as the solution to a two-stage optimization problem. To this purpose,

let

Wt ≡ Et

∞∑
T=t

βT−tũc(YT −GT ; ξT )sT ,

and let F be the set of values for (bt−1, ∆t−1, Ft, Kt,Wt) such that there exist

paths {ΠT , YT , τT , bT , ∆T} for dates T ≥ t that satisfy (A.16), (A.17) and

(A.18) for each T , that are consistent with the specified values for Ft, Kt, de-

fined in (A.23) and (A.24), and Wt, and that imply a well-defined value for the

objective Ut defined in (A.20). Furthermore, for any (bt−1, ∆t−1, Ft, Kt, Wt) ∈
F , let V (bt−1, ∆t−1, Xt; ξt) denote the maximum attainable value of Ut among

the state-contingent paths that satisfy the constraints just mentioned, where

Xt ≡ (Ft, Kt,Wt).
35 Among these constraints is the requirement that

Wt =
bt−1

Πt

ũc(Yt −Gt; ξt), (A.22)

in order for (A.18) to be satisfied. Thus a specified value for Wt implies a

restriction on the possible values of Πt and Yt, given the predetermined real

debt bt−1 and the exogenous disturbances.

The two-stage optimization problem is the following. In the first stage,

values of the endogenous variables xt0 , where xt ≡ (Πt, Yt, τt, bt, ∆t), and

state-contingent commitments Xt0+1(ξt0+1) for the following period, are cho-

sen so as to maximize an objective defined below. In the second stage, the

equilibrium evolution from period t0 + 1 onward is chosen to solve the max-

imization problem that defines the value function V (bt0 , ∆t0 , Xt0+1; ξt0+1),

35As stated in the text, in our notation for the value function V, ξt denotes not simply
the vector of disturbances in period t, but all information in period t about current and
future disturbances.
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given the state of the world ξt0+1 and the precommitted values for Xt0+1

associated with that state.

In defining the objective for the first stage of this equivalent formulation

of the Ramsey problem, it is useful to let Π(F, K) denote the value of Πt that

solves (A.16) for given values of Ft and Kt, and to let s(x; ξ) denote the real

primary surplus st defined by (A.19) in the case of given values of xt and ξt.

We also define the functional relationships

Ĵ [x,X(·)](ξt) ≡ U(Yt, ∆t; ξt) + βEtV (bt, ∆t, Xt+1; ξt+1),

F̂ [x,X(·)](ξt) ≡ (1− τt)f(Yt; ξt) + αβEt{Π(Ft+1, Kt+1)
θ−1Ft+1},

K̂[x,X(·)](ξt) ≡ k(Yt; ξt) + αβEt{Π(Ft+1, Kt+1)
θ(1+ω)Kt+1},

Ŵ [x,X(·)](ξt) ≡ ũc(Yt −Gt; ξt)s(xt; ξt) + βEtWt+1,

where f(Y ; ξ) and k(Y ; ξ) are defined in (A.13) and (A.14).

Then in the first stage, xt0 and Xt0+1(·) are chosen so as to maximize

Ĵ [xt0 , Xt0+1(·)](ξt0) (A.23)

over values of xt0 and Xt0+1(·) such that

(i) Πt0 and ∆t0 satisfy (A.17);

(ii) the values

Ft0 = F̂ [xt0 , Xt0+1(·)](ξt0), (A.24)

Kt0 = K̂[xt0 , Xt0+1(·)](ξt0) (A.25)

satisfy

Πt0 = Π(Ft0 , Kt0); (A.26)

(iii) the value

Wt0 = Ŵ [xt0 , Xt0+1(·)](ξt0) (A.27)

satisfies (A.22) for t = t0; and

(iv) the choices (bt0 , ∆t0 , Xt0+1) ∈ F for each possible state of the world

ξt0+1.

These constraints imply that the objective Ĵ [xt0 , Xt0+1(·)](ξt0) is well-

defined, and that values (xt0 , Xt0+1(·)) are chosen for which the stage two
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problem will be well-defined, whichever state of the world is realized in pe-

riod t0 +1. Furthermore, in the case of any stage-one choices consistent with

the above constraints, and any subsequent evolution consistent with the con-

straints of the stage-two problem, (A.26) implies that (A.16) is satisfied in

period t0, while (A.22) implies that (A.18) is satisfied in period t0. Con-

straint (i) above implies that (A.17) is also satisfied in period t0. Finally,

the constraints of the stage-two problem imply that both (A.16), (A.17) and

(A.18) are satisfied in each period t ≥ t0 +1; thus the state-contingent evolu-

tion that solves the two-stage problem is a rational-expectations equilibrium.

Conversely, one can show that any possible rational-expectations equilibrium

satisfies all of these constraints.

One can then reformulate the Ramsey problem, replacing the set of re-

quirements for rational-expectations equilibrium by the stage-one constraints

plus the stage-two constraints. Since no aspect of the evolution from period

t0 + 1 onward, other than the specification of Xt0+1(·), affects the stage-one

constraints, the optimization problem decomposes into the two stages defined

above, where the objective (A.23) corresponds to the maximization of Ut0 in

the first stage.

The optimization problem in stage two of this reformulation of the Ram-

sey problem is of the same form as the Ramsey problem itself, except that

there are additional constraints associated with the precommitted values for

the elements of Xt0+1(ξt0+1). Let us consider a problem like the Ramsey

problem just defined, looking forward from some period t0, except under the

constraints that the quantities Xt0 must take certain given values, where

(bt0−1, ∆t0−1, Xt0) ∈ F . This constrained problem can similarly be expressed

as a two-stage problem of the same form as above, with an identical stage two

problem to the one described above. The stage one problem is also identical

to stage one of the Ramsey problem, except that now the plan chosen in stage

one must be consistent with the given values Xt0 , so that conditions (A.24),

(A.25) and (A.27) are now added to the constraints on the possible choices

of (xt0 , Xt0+1(·)) in stage one. (The stipulation that (bt0−1, ∆t0−1, Xt0) ∈ F
implies that the constraint set remains non-empty despite these additional

restrictions.)

Stage two of this constrained problem is thus of exactly the same form as
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the problem itself. Hence the constrained problem has a recursive form. It

can be decomposed into an infinite sequence of problems, in which in each

period t, (xt, Xt+1(·)) are chosen to maximize Ĵ [xt, Xt+1(·)](ξt), given the

predetermined state variables (bt−1, ∆t−1) and the precommitted values Xt,

subject to the constraints that

(i) Πt is given by (A.26), Yt is then given by (A.22), and ∆t is given by

(A.17);

(ii) the precommitted values Xt are fulfilled, i.e.,

F̂ [xt, Xt+1(·)](ξt) = Ft, (A.28)

K̂[xt, Xt+1(·)](ξt) = Kt, (A.29)

Ŵ [xt, Xt+1(·)](ξt) = Wt; (A.30)

and

(iii) the choices (bt, ∆t, Xt+1) ∈ F for each possible state of the world

ξt+1.

Our aim in the paper is to provide a local characterization of policy that

solves this recursive optimization, in the event of small enough disturbances,

and initial conditions (bt0−1, ∆t0−1, Xt) ∈ F that are close enough to consis-

tency with the steady state characterized in the next section of this appendix.

A.3 The deterministic steady state

Here we show the existence of a steady state, i.e., of an optimal policy (under

appropriate initial conditions) of the ‘recursive policy problem just defined

that involves constant values of all variables. We now consider a deterministic

problem in which the exogenous disturbances C̄t, Gt, H̄t, At, µw
t , ζt each take

constant values C̄, H̄, Ā, µ̄w > 0 and Ḡ, ζ̄ ≥ 0 for all t ≥ t0, and we start

from initial conditions bt0−1 = b̄ > 0. (The value of b̄ is arbitrary, subject to

an upper bound discussed below.) We wish to find an initial degree of price

dispersion ∆t0−1 and initial commitments Xt0 = X̄ such that the recursive

(or “stage two”) problem involves a constant policy xt0 = x̄, Xt+1 = X̄ each

period, in which b̄ is equal to the initial real debt and ∆̄ is equal to the initial

price dispersion.
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We thus consider the problem of maximizing

Ut0 =
∞∑

t=t0

βt−t0U(Yt, ∆t) (A.31)

subject to the constraints

Ktp(Πt)
1+ωθ
θ−1 = Ft, (A.32)

Ft = (1− τt)f(Yt) + αβΠθ−1
t+1Ft+1, (A.33)

Kt = k(Yt) + αβΠ
θ(1+ω)
t+1 Kt+1, (A.34)

Wt = uc(Yt)(τtYt − Ḡ− ζ̄) + βWt+1, (A.35)

Wt =
uc(Yt)bt−1

Πt

, (A.36)

∆t = α∆t−1Π
θ(1+ω)
t + (1− α)p(Πt)

− θ(1+ω)
1−θ , (A.37)

and given the specified initial conditions bt0−1, ∆t0−1, Xt0 , where we have

defined

p(Πt) ≡
(

1− αΠθ−1
t

1− α

)
.

We introduce Lagrange multipliers φ1t through φ6t corresponding to con-

straints (A.32) through (A.37) respectively. We also introduce multipliers

dated t0 corresponding to the constraints implied by the initial conditions

Xt0 = X̄; the latter multipliers are normalized in such a way that the first-

order conditions take the same form at date t0 as at all later dates. The

first-order conditions of the maximization problem are then the following.

The one with respect to Yt is

Uy(Yt, ∆t)− (1− τt)fy(Yt)φ2t − ky(Yt)φ3t − τtfy(Yt)φ4t+

+ucc(Yt)(Ḡ + ζ̄)φ4t − ucc(Yt)bt−1Π
−1
t φ5t = 0; (A.38)

that with respect to ∆t is

U∆(Yt, ∆t) + φ6t − αβΠ
θ(1+ω)
t+1 φ6,t+1 = 0; (A.39)
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that with respect to Πt is

1 + ωθ

θ − 1
p(Πt)

(1+ωθ)
θ−1

−1pπ(Πt)Ktφ1,t − α(θ − 1)Πθ−2
t Ftφ2,t−1

−θ(1 + ω)αΠ
θ(1+ω)−1
t Ktφ3,t−1 + uc(Yt)bt−1Π

−2
t φ5t+

−θ(1 + ω)α∆t−1Π
θ(1+ω)−1
t φ6t − θ(1 + ω)

θ − 1
(1− α)p(Πt)

(1+ωθ)
θ−1 pπ(Πt)φ6t = 0;

(A.40)

that with respect to τt is

φ2t − φ4t = 0; (A.41)

that with respect to Ft is

−φ1t + φ2t − αΠθ−1
t φ2,t−1 = 0; (A.42)

that with respect to Kt is

p(Πt)
1+ωθ
θ−1 φ1t + φ3t − αΠ

θ(1+ω)
t φ3,t−1 = 0; (A.43)

that with respect to Wt is

φ4t − φ4,t−1 + φ5t = 0; (A.44)

and finally, that with respect to bt is

φ5t = 0. (A.45)

We search for a solution to these first-order conditions in which Πt = Π̄,

∆t = ∆̄, Yt = Ȳ , τt = τ̄ and bt = b̄ at all times. A steady-state solution

of this kind also requires that the Lagrange multipliers take constant values.

We furthermore conjecture the existence of a solution in which Π̄ = 1, as

stated in the text. Note that such a solution implies that ∆̄ = 1, p(Π̄) = 1,

pπ(Π̄) = −(θ − 1)α/(1− α), and K̄ = F̄ . Using these substitutions, we find

that (the steady-state version of) each of the first-order conditions (A.38) –

(A.45) is satisfied if the steady-state values satisfy

φ1 = (1− α)φ2,

[fy(Ȳ )− ky(Ȳ )− ucc(Ȳ − Ḡ)(Ḡ + ζ̄)]φ2 = Uy(Ȳ , 1),
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φ3 = −φ2,

φ4 = φ2,

φ5 = 0,

(1− αβ)φ6 = −U∆(Ȳ , 1).

These equations can obviously be solved (uniquely) for the steady-state mul-

tipliers, given any value Ȳ > 0.

Similarly, (the steady-state versions of) the constraints (A.32) – (A.37)

are satisfied if

(1− τ̄)uc(Ȳ − Ḡ) =
θ

θ − 1
µ̄wvy(Ȳ ), (A.46)

τ̄ Ȳ = Ḡ + ζ̄ + (1− β)b̄, (A.47)

K̄ = F̄ = (1− αβ)−1k(Ȳ ),

W̄ = uc(Ȳ − Ḡ)b̄.

Equations (A.46) – (A.47) provide two equations to solve for the steady-

state values Ȳ and τ̄ . Under standard (Inada-type) boundary conditions on

preferences, equation (A.46) has a unique solution Y1(τ) > Ḡ for each possible

value of 0 ≤ τ < 1;36 this value is a decreasing function of τ, and approaches

Ḡ as τ approaches 1. We note furthermore that at least in the case of all small

enough values of Ḡ, there exists a range of tax rates 0 < τ1 < τ < τ2 ≤ 1

over which Y1(τ) > Ḡ/τ.37 Given our assumption that b̄ > 0 and that Ḡ,

ζ̄ ≥ 0, (A.47) is satisfied only by positive values of τ̄ ; and for each τ̄ > 0, this

equation has a unique solution Y2(τ). We note furthermore that the locus

Y1(τ) is independent of the values of ζ̄ and b̄, while Y2(τ) approaches Ḡ/τ as

ζ̄ and b̄ approach zero. Fixing the value of Ḡ (at a value small enough for the

interval (τ1, τ2) to exist), we then observe that for any small enough values

of b̄ > 0 and ζ̄ ≥ 0, there exist values 0 < τ < 1 at which Y2(τ) < Y1(τ). On

the other hand, for all small enough values of τ > 0, Y2(τ) > Y1(τ). Thus

36There is plainly no possibility of positive supply of output by producers in the case
that τt ≥ 1 in any period; hence the steady state must involve τ̄ < 1.

37This is true for any tax rate at which (1 − τ)uc(Ḡ(τ−1 − 1)) exceeds (θ/(θ −
1))µ̄wvy(Ḡ/τ). Fixing any value 0 < τ < 1, our Inada conditions imply that this in-
equality holds for all small enough values of Ḡ. And if the inequality holds for some
0 < τ < 1, then by continuity it must hold for an open interval of values of τ.
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by continuity, there must exist a value 0 < τ̄ < 1 at which Y1(τ̄) = Y2(τ̄).38

This allows us to obtain a solution for 0 < τ̄ < 1 and Ȳ > 0, in the case of

any small enough values of Ḡ, ζ̄ ≥ 0 and b̄ > 0. The remaining equations can

then be solved (uniquely) for K̄ = F̄ and for W̄ .

We have thus verified that a constant solution to the first-order conditions

exists. With a method to be explained below, we check that this solution

is indeed at least a local optimum. Note that as asserted in the text, this

deterministic steady state involves zero inflation, and a steady-state tax rate

0 < τ̄ < 1.

A.4 A second-order approximation to utility (equa-

tions (3.1) and (3.2))

We derive here equations (3.1) and (3.2) in the main text, taking a second-

order approximation to (equation (A.20)) following the treatment in Wood-

ford (2003, chapter 6). We start by approximating the expected discounted

value of the utility of the representative household

Ut0 = Et0

∞∑
t=t0

βt−t0

[
u(Yt; ξt)−

∫ 1

0

v(yt(i); ξt)di

]
. (A.48)

First we note that
∫ 1

0

v(yt(i); ξt)di =
λ

1 + ν

Y 1+ω
t

A1+ω
t H̄ν

t

∆t = v(Yt; ξt)∆t

where ∆t is the measure of price dispersion defined in the text. We can then

write (A.48) as

Ut0 = Et0

∞∑
t=t0

βt−t0 [u(Yt; ξt)− v(Yt; ξt)∆t] . (A.49)

38In fact, there must exist at least two such solutions, since the Inada conditions also
imply that Y2(τ) > Y1(τ) for all τ close enough to 1. These multiple solutions correspond
to a “Laffer curve” result, under which two distinct tax rates result in the same equilibrium
level of government revenues. We select the lower-tax, higher-output solution as the one
around which we compute our Taylor-series expansions; this is clearly the higher-utility
solution.
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The first term in (A.49) can be approximated using a second-order Taylor

expansion around the steady state defined in the previous section as

u(Yt; ξt) = ū + ūcỸt + ūξξt +
1

2
ūccỸ

2
t + ūcξξtỸt +

1

2
ξ′tūξξξt +O(||ξ||3)

= ū + Ȳ ūc · (Ŷt +
1

2
Ŷ 2

t ) + ūξξt +
1

2
Ȳ ūccŶ

2
t +

+Ȳ ūcξξtŶt +
1

2
ξ′tūξξξt +O(||ξ||3)

= Ȳ ucŶt +
1

2
[Ȳ ūc + Ȳ 2ūcc]Ŷ

2
t − Ȳ 2ūccgtŶt + t.i.p. +O(||ξ||3)

= Ȳ ūc

{
Ŷt +

1

2
(1− σ−1)Ŷ 2

t + σ−1gtŶt

}
+

+t.i.p. +O(||ξ||3), (A.50)

where a bar denotes the steady-state value for each variable, a tilde denotes

the deviation of the variable from its steady-state value (e.g., Ỹt ≡ Yt − Ȳ ),

and a hat refers to the log deviation of the variable from its steady-state

value (e.g., Ŷt ≡ ln Yt/Ȳ ). We use ξt to refer to the entire vector of exogenous

shocks,

ξ′t ≡
[

ζ̂t Ĝ gt qt µ̂w
t

]
,

in which ζ̂t ≡ (ζt−ζ)/Y , Ĝt ≡ (Gt−G)/Y , gt ≡ Ĝt +sC c̄t, ωqt ≡ νh̄t +φ(1+

ν)at, µ̂w
t ≡ ln µw

t /µ̄w, c̄t ≡ ln C̄t/C̄, at ≡ ln At/Ā, h̄t ≡ ln H̄t/H̄. Moreover,

we use the definitions σ−1 ≡ σ̃−1s−1
C with sC ≡ C̄/Y and sC + sG = 1. We

have used the Taylor expansion

Yt/Ȳ = 1 + Ŷt +
1

2
Ŷ 2

t +O(||ξ||3)

to get a relation for Ỹt in terms of Ŷt. Finally the term “t.i.p.” denotes terms

that are independent of policy, and may accordingly be suppressed as far as

the welfare ranking of alternative policies is concerned.

59
ECB

Working Paper Series No. 345
April 2004



We may similarly approximate v(Yt; ξt)∆t by

v(Yt; ξt)∆t = v̄ + v̄(∆t − 1) + v̄y(Yt − Ȳ ) + v̄y(∆t − 1)(Yt − Ȳ ) + (∆t − 1)v̄ξξt +

+
1

2
v̄yy(Yt − Ȳ )2 + (Yt − Ȳ )v̄yξξt +O(||ξ||3)

= v̄(∆t − 1) + v̄yȲ

(
Ŷt +

1

2
Ŷ 2

t

)
+ v̄y(∆t − 1)Ȳ Ŷt + (∆t − 1)v̄ξξt +

+
1

2
v̄yyȲ

2Ŷ 2
t + Ȳ Ŷtv̄yξξt + t.i.p.+O(||ξ||3)

= v̄yȲ [
∆t − 1

1 + ω
+ Ŷt +

1

2
(1 + ω)Ŷ 2

t + (∆t − 1)Ŷt − ωŶtqt +

−∆t − 1

1 + ω
ωqt] + t.i.p.+O(||ξ||3).

We take a second-order expansion of (A.21), obtaining

∆̂t = α∆̂t−1 +
α

1− α
θ(1 + ω)(1 + ωθ)

π2
t

2
+ t.i.p.+O(||ξ||3). (A.51)

This in turn allows us to approximate v(Yt; ξt)∆t as

v(Yt; ξt)∆t = (1−Φ)Ȳ uc

{
∆̂t

1 + ω
+ Ŷt +

1

2
(1 + ω)Ŷ 2

t − ωŶtqt

}
+t.i.p.+O(||ξ||3),

(A.52)

where we have used the steady state relation v̄y = (1−Φ)ūc to replace v̄y by

(1− Φ)ūc, and where

Φ ≡ 1−
(

θ − 1

θ

)(
1− τ̄

µ̄w

)
< 1

measures the inefficiency of steady-state output Ȳ .

Combining (A.50) and (A.52), we finally obtain equation (3.1) in the text,

Ut0 = Y ūc · Et0

∞∑
t=t0

βt−t0ΦŶt − 1

2
uyyŶ

2
t + Ŷtuξξt − u∆∆̂t

+ t.i.p. +O(||ξ||3), (A.53)

where

uyy ≡ (ω + σ−1)− (1− Φ)(1 + ω),

uξξt ≡ [σ−1gt + (1− Φ)ωqt],

u∆ ≡ (1− Φ)

1 + ω
.
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We finally observe that (A.51) can be integrated to obtain

∞∑
t=t0

βt ∆̂t =
α

(1− α)(1− αβ)
θ(1 + ω)(1 + ωθ)

∞∑
t=t0

βt π2
t + t.i.p. +O(||ξ||3).

(A.54)

By substituting (A.54) into (A.53), we obtain

Ut0 = Y ūc · Et0

∞∑
t=t0

βt−t0 [ΦŶt − 1

2
uyyŶ

2
t + Ŷtuξξt − uππ2

t ]

+t.i.p. +O(||ξ||3).

This coincides with equation (3.2) in the text, where we have further defined

κ ≡ (1− αβ)(1− α)

α

(ω + σ−1)

(1 + θω)
, uπ ≡ θ(ω + σ−1)(1− Φ)

κ
.

A.5 A second-order approximation to the AS equation

(equation (2.11))

We now compute a second-order approximation to the aggregate supply equa-

tion (A.16), or equation (2.11) in the main text. We start from (A.10) that

can be written as

p̃t =

(
Kt

Ft

) 1
1+ωθ

,

where p̃t ≡ p∗t /Pt. As shown in Benigno and Woodford (2003), a second-order

expansion of this can be expressed in the form

(1 + ωθ)

(1− αβ)
ˆ̃pt = zt + αβ

(1 + ωθ)

(1− αβ)
Et(ˆ̃pt+1 − P̂t,t+1) +

1

2
ztXt +

−1

2
(1 + ωθ)ˆ̃ptZt +

1

2
αβ(1 + ωθ)Et{(ˆ̃pt+1 − P̂t,t+1)Zt+1}

+
αβ

2(1− αβ)
(1− 2θ − ωθ)(1 + ωθ)Et{(ˆ̃pt+1 − P̂t,t+1)P̂t,t+1}

+s.o.t.i.p. +O(||ξ||3), (A.55)

where we define

P̂t,T ≡ log(Pt/PT ),

zt ≡ ω(Ŷt − qt) + σ̃−1(Ĉt − c̄t)− Ŝt + µ̂w
t ,
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Zt ≡ Et

{
+∞∑
T=t

(αβ)T−t[XT + (1− 2θ − ωθ)P̂t,T ]

}
,

and in this last expression

XT ≡ (2 + ω)ŶT − ωqT + µ̂w
T + ŜT − σ̃−1(ĈT − c̄T ),

where Ŝt = ln(1 − τt)/(1 − τ̄). Here “s.o.t.i.p.” refers to second-order (or

higher) terms independent of policy; the first-order terms have been kept as

these will matter for the log-linear aggregate-supply relation that appears as

a constraint in our policy problem.

We next take a second-order expansion of the law of motion (A.15) for

the price index, obtaining

ˆ̃pt =
α

1− α
πt − 1− θ

2

α

(1− α)2
π2

t +O(||ξ||3), (A.56)

where we have used the fact that

ˆ̃pt =
α

1− α
πt +O(||ξ||2),

and P̂t−1,t = −πt. We can then plug (A.56) into (A.55) obtaining

πt =
1− θ

2

1

(1− α)
π2

t +
κ

(ω + σ−1)
zt + βEtπt+1 − 1− θ

2

αβ

(1− α)
Etπ

2
t+1

+
1

2

κ

(ω + σ−1)
ztXt − 1

2
(1− αβ)πtZt +

β

2
(1− αβ)Et{πt+1Zt+1}

−β

2
(1− 2θ − ωθ)Et{π2

t+1}+ s.o.t.i.p. +O(||ξ||3). (A.57)

We note further that a second-order approximation to the identity Ct =

Yt −Gt yields

Ĉt = s−1
C Ŷt−s−1

C Ĝt+
s−1

C (1− s−1
C )

2
Ŷ 2

t +s−2
C ŶtĜt+s.o.t.i.p.+O(||ξ||3), (A.58)

and that

Ŝt = −ωτ τ̂t − ωτ

(1− τ̄)
τ̂ 2
t +O(||ξ||3), (A.59)

where ωτ ≡ τ̄ /(1−τ̄). By substituting (A.58) and (A.59) into the definition of

zt in (A.57), we finally obtain a quadratic approximation to the AS relation.
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This can be expressed compactly in the form

Vt = κ(c′xxt + c′ξξt +
1

2
x′tCxxt + x′tCξξt +

1

2
cππ2

t ) + βEtVt+1

+s.o.t.i.p. +O(||ξ||3) (A.60)

where we have defined

xt ≡
[

τ̂t

Ŷt

]
,

c′x =
[

ψ 1
]
,

c′ξ =
[

0 0 −σ−1(ω + σ−1)−1 −ω(ω + σ−1)−1 (ω + σ−1)−1
]
,

Cx =

[
ψ (1− σ−1)ψ

(1− σ−1)ψ (2 + ω − σ−1) + σ−1(1− s−1
C )(ω + σ−1)−1

]
,

Cξ =

[
0 0 ψσ−1 0 0

0
σ−1s−1

C

(ω+σ−1)
−σ−1(1−σ−1)

(ω+σ−1)
− ω(1+ω)

(ω+σ−1)
(1+ω)

(ω+σ−1)

]
,

cπ =
θ(1 + ω)(ω + σ−1)

κ

Vt = πt +
1

2
vππ2

t + vzπtZt,

Zt = z′xxt + zππt + z′ξξt + αβEtZt+1,

in which the coefficients

ψ ≡ ωτ/(ω + σ−1),

and

vπ ≡ θ(1 + ω)− 1− θ

(1− α)
, vz ≡ (1− αβ)

2
,

vk ≡ αβ

1− αβ
(1− 2θ − ωθ),

z′x ≡
[

(2 + ω − σ−1) + vk(ω + σ−1) −ωτ (1− vk)
]
,

z′ξ ≡
[

0 0 σ−1(1− vk) −ω(1 + vk) (1− vk)
]
,

zπ ≡ −vk.
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Note that in a first-order approximation, (A.60) can be written as simply

πt = κ[Ŷt + ψτ̂t + c′ξξt] + βEtπt+1, (A.61)

where

c′ξξt ≡ (ω + σ−1)−1[−σ−1gt − ωqt + µ̂w
t ].

We can also integrate (A.60) forward from time t0 to obtain

Vt0 = Et0

∞∑
t=t0

βt−t0κ(c′xxt +
1

2
x′tCxxt + x′tCξξt +

1

2
cππ2

t )

+t.i.p. +O(||ξ||3), (A.62)

where the term c′ξξt is now included in terms independent of policy. (Such

terms matter when part of the log-linear constraints, as in the case of (A.61),

but not when part of the quadratic objective.)

A.6 A second-order approximation to the intertempo-

ral government solvency condition (equation (2.15))

We now derive a second-order approximation to the intertemporal govern-

ment solvency condition. We use the definition

Wt ≡ Et

∞∑
T=t

βT−tũc(YT ; ξT )sT , (A.63)

where

st ≡ τtYt −Gt − ζt, (A.64)

and

Wt =
bt−1

Πt

ũc(Ct; ξt). (A.65)
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First, we take a second-order approximation of the term ũc(Ct; ξt)st obtaining

ũc(Ct; ξt)st = s̄ũc + ũccs̄C̃t + ũcs̃t + s̄ũcξξt +
1

2
s̄ũcccC̃

2
t + ũccC̃ts̃t + s̄C̃tũccξξt

+s̃tũcξξt + s.o.t.i.p. +O(||ξ||3),
= s̄ũc + ũccs̄C̄Ĉt + ũcs̃t + s̄ũcξξt +

1

2
s̄(ũccC̄ + ũcccC̄

2)Ĉ2
t + C̄ũccĈts̃t +

s̄C̄ũccξξtĈt + ũcξξts̃t + s.o.t.i.p. +O(||ξ||3)
= s̄ũc + ũc[−σ̃−1s̄Ĉt + s̃t + s̄ũ

−1

c ũcξξt +
1

2
s̄σ̃−2C̃2

t − σ̃−1s̃tĈt +

s̄C̄ũ
−1

c ũccξξtĈt + ũ
−1

c ũcξξts̃t] + s.o.t.i.p. +O(||ξ||3)
= s̄ũc + ũc[−σ̃−1s̄(Ĉt − c̄t) + s̃t +

1

2
s̄σ̃−2C̃2

t − σ̃−1s̃t(Ĉt − c̄t)− σ̃−2s̄c̄tĈt]

+s.o.t.i.p. +O(||ξ||3) (A.66)

where we have followed previous definitions and use the isoelastic functional

forms assumed and note that we can write ũ
−1

c ũcξξt = σ̃−1c̄t and C̄ũ
−1

c ũccξξt =

−σ̃−2c̄t. Plugging (A.58) into (A.66) we obtain

ũc(Ct; ξ̃t)st = s̄ũc[1− σ−1Ŷt + σ−1gt + s̄−1s̃t +
1

2
[σ−1(s−1

C − 1) + σ−2]Ŷ 2
t +

−σ−1s̄−1(Ŷt − gt)s̃t − σ−1(s−1
C Ĝt + σ−1gt)Ŷt] + s.o.t.i.p. +

+O(||ξ||3) (A.67)

by using previous definitions.

We recall now that the primary surplus is defined as

st = τtYt −Gt − ζt

which can be expanded in a second-order expansion to get

s̄−1s̃t = (1 + ωg)(Ŷt + τ̂t)− s−1
d (Ĝt + ζ̂t) +

(1 + ωg)

2
(Ŷt + τ̂t)

2

+s.o.t.i.p. +O(||ξ||3), (A.68)

where we have defined sd ≡ s̄/Y , ωg = (G + ζ)/s and ζ̂t = (ζt − ζ̄)/Y .

65
ECB

Working Paper Series No. 345
April 2004



Substituting (A.68) into (A.67), we obtain

ũc(Ct; ξ̃t)st = s̄ũc[1− σ−1Ŷt + (1 + ωg)(Ŷt + τ̂t) + σ−1gt − s−1
d (Ĝt + ζ̂t)

+
(1 + ωg)

2
τ̂ 2
t + (1 + ωg)(1− σ−1)τ̂tŶt +

+
1

2

[
1 + ωg + σ−1(s−1

C − 1) + σ−2 − 2σ−1(1 + ωg)
]
Ŷ 2

t +

−σ−1[s−1
C Ĝt + (σ−1 − 1− ωg)gt − s−1

d (Ĝt + ζ̂t)]Ŷt

+σ−1(1 + ωg)gtτ̂t] + s.o.t.i.p. +O(||ξ||3). (A.69)

Substituting (A.69) into (A.63), we obtain

W̃t = (1− β)[b′xxt + b′ξξt +
1

2
x′tBxxt + x′tBξξt] + βEtW̃t+1

s.o.t.i.p. +O(||ξ||3) (A.70)

where W̃t ≡ (Wt − W̄ )/W̄and

b′x =
[

(1 + ωg) (1 + ωg)− σ−1
]
,

b′ξ =
[
−s−1

d −s−1
d σ−1 0 0

]
,

Bx =

[
(1 + ωg) (1− σ−1)(1 + ωg)

(1− σ−1)(1 + ωg) (1 + ωg) + (s−1
C − 1)σ−1 + σ−2 − 2σ−1(1 + ωg)

]
,

Bξ =

[
0 0 σ−1(1 + ωg) 0 0

s−1
d σ−1 s−1

d σ−1 − s−1
C σ−1 −σ−1(σ−1 − 1− ωg) 0 0

]
,

We further note from (A.70) that

W̃t ≡ (b̂t−1 − πt − σ̃−1Ĉt + c̄t) +
1

2
(b̂t−1 − πt − σ̃−1Ĉt + c̄t)

2 +O(||ξ||3).

Substituting in (A.58), we obtain

W̃t ≡ b̂t−1 − πt − σ−1(Ŷt − gt)− σ−1(1− s−1
C )

2
Ŷ 2

t − σ−1s−1
C ŶtĜt

+
1

2
(b̂t−1 − πt − σ−1(Ŷt − gt))

2 + s.o.t.i.p. +O(||ξ||3)

which can be written as

W̃t = b̂t−1 − πt + w′
xxt + w′

ξξt +
1

2
x′tWxxt + x′tWξξt +

1

2
[b̂t−1 − πt + w′

xxt + w′
ξξt]

2

+s.o.t.i.p. +O(||ξ||3)
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w′
x =

[
0 −σ−1

]
,

w′
ξ =

[
0 0 σ−1 0 0

]
,

Wx =

[
0 0

0 (s−1
C − 1)σ−1

]
,

Wξ =

[
0 0 0 0 0

0 −s−1
C σ−1 0 0 0

]
.

Note that in the first-order approximation we can simply write (A.70) as

b̂t−1 − πt + w′
xxt + w′

ξξt = (1− β)[b′xxt + b′ξξt]

+ βEt[b̂t − πt+1 + w′
xxt+1 + w′

ξξt+1]. (A.71)

Moreover integrating forward (A.70), we obtain that

W̃t0 = (1−β)Et0

∞∑
t=t0

βt−t0 [b′xxt+
1

2
x′tBxxt+x′tBξξt]+t.i.p.+O(||ξ||3), (A.72)

where we have moved b′ξξt in t.i.p.

A.7 A quadratic policy objective (equations (3.3) and

(3.4))

We now derive a quadratic approximation to the policy objective function.

To this end, we combine equation (A.62) and (A.72) in a way to eliminate

the linear term in (A.53). Indeed, we find ϑ1, ϑ2 such that

ϑ1b
′
x + ϑ2c

′
x = a′x ≡ [0 Φ].

The solution is given by

ϑ1 = −Φωτ

Γ
,

ϑ2 =
Φ(1 + ωg)

Γ
,

where

Γ = (ω + σ−1)(1 + ωg)− ωτ (1 + ωg) + ωτσ
−1.
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We can write

Et0

∞∑
t=t0

βt−t0ΦŶt = Et0

∞∑
t=t0

βt−t0 [ϑ1b
′
x + ϑ2c

′
x]xt

= −Et0

∞∑
t=t0

βt−t0 [
1

2
x′tDxxt + x′tDξξt +

1

2
dππ2

t ]

+ϑ1W̃t0 + ϑ2κ
−1Vt0 + t.i.p. +O(||ξ||3)

where

Dx ≡ ϑ1Bx + ϑ2Cx, etc.

Hence

Ut0 = ΩEt0

∞∑
t=t0

βt−t0

{
a′xxt − 1

2
x′tAxxt − x′tAξξt − 1

2
aππ2

t

}
+ t.i.p. +O(||ξ||3)

= −ΩEt0

∞∑
t=t0

βt−t0

{
1

2
x′tQxxt + x′tQξξt +

1

2
qππ2

t

}
+ Tt0 + t.i.p. +O(||ξ||3)

= −ΩEt0

∞∑
t=t0

βt−t0

{
1

2
qy(Ŷt − Ŷ ∗

t )2 +
1

2
qππ2

t

}
+ Tt0 +

+t.i.p. +O(||ξ||3) (A.73)

In particular, we obtain that Ω = ūcȲ and that

Qx =

[
0 0

0 qy

]
,

with

qy ≡ (1− Φ)(ω + σ−1) + Φ(ω + σ−1)
(1 + ωg)(1 + ω)

Γ
+ Φσ−1 (1 + ωτ )(1 + ωg)

Γ

−Φσ−1s−1
C

1 + ωg + ωτ

Γ
;

moreover we have defined

Qξ =

[
0 0 0 0 0

qξ1 qξ2 qξ3 qξ4 qξ5

]
,

68
ECB
Working Paper Series No. 345
April 2004



with

qξ1 = −Φωτ

Γ
s−1

d σ−1,

qξ2 = −Φσ−1s−1
d ωτ

Γ
+

σ−1s−1
C Φ(1 + ωg + ωτ )

Γ
,

qξ3 = −(1− Φ)σ−1 − σ−1Φ(1 + ω)(1 + ωg)

Γ
,

qξ4 = −(1− Φ)ω − ωΦ(1 + ω)(1 + ωg)

Γ
,

qξ5 = Φ
1 + ωg

Γ
(1 + ω) ,

and

qπ =
Φ(1 + ωg)θ(1 + ω)(ω + σ−1)

Γκ
+

(1− Φ)θ(ω + σ−1)

κ
.

We have further defined Ŷ ∗
t , the desired level of output, as

Ŷ ∗
t = −q−1

y q′ξξt.

Finally,

Tt0 ≡ Ȳ ūc[ϑ1W̃t0 + ϑ2κ
−1Vt0 ]

is a transitory component. Equation (A.73) corresponds to equation (3.3) in

the main text. In particular, given the commitments on the initial values of

the vector Xt0 , Wt0 implies that W̃t0 is given when characterizing the optimal

policy from a timeless perspective. Moreover, Ft0 and Kt0 imply that Vt0 and

Zt0 are as well given. It follows that the value of the transitory component Tt0

is predetermined under the stage two of the Ramsey problem. Hence, over

the set of admissible policies, higher values of (A.73) correspond to lower

values of

Et0

∞∑
t=t0

βt−t0

{
1

2
qy(Ŷt − Ŷ ∗

t )2 +
1

2
qππ2

t

}
. (A.74)

It follows that we may rank policies in terms of the implied value of the

discounted quadratic loss function (A.74) which corresponds to equation (3.4)

in the main text. Because this loss function is purely quadratic (i.e., lacking

linear terms), it is possible to evaluate it to second order using only a first-

order approximation to the equilibrium evolution of inflation and output

under a given policy. Hence the log-linear approximate structural relations
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(A.61) and (A.71) are sufficiently accurate for our purposes. Similarly, it

suffices that we use log-linear approximations to the variables Vt0 and W̃t0 in

describing the initial commitments, which are given by

V̂t0 = πt0 ,

Ŵt0 = b̂t0−1 − πt0 + w′
xxt0 + w′

ξξt0

= b̂t0−1 − πt0 − σ−1(Ŷt0 − gt0).

Then an optimal policy from a timeless perspective is a policy from date

t0 onward that minimizes the quadratic loss function (A.74) subject to the

constraints implied by the linear structural relations (A.61) and (A.71) hold-

ing in each period t ≥ t0, given the initial values b̂t0−1, ∆̂t0−1, and subject

also to the constraints that certain predetermined values for V̂t0 and Ŵt0 (or

alternatively, for πt0 and for Ŷt0) be achieved.39 We note that under the as-

sumption that ω + σ−1 > ωτ = τ̄ /(1− τ̄), Γ > 0, which implies that qπ > 0.

Moreover, if

sC >
Φσ−1(1 + ωg + ωτ )

(1− Φ)(ω + σ−1)Γ + Φ(ω + σ−1)(1 + ωg)(1 + ω) + Φσ−1(1 + ωg)(1 + ωτ )
,

then qy > 0 and the objective function is convex. Since the expression on

the right-hand side of this inequality is necessarily less than one (given that

Γ > 0), the inequality is satisfied for all values of sG less than a positive

upper bound.

A.8 The log-linear aggregate-supply relation and the

cost-push disturbance term

The AS equation (A.61) can be written as

πt = κ[yt + ψτ̂t + ut] + βEtπt+1, (A.75)

where ut is composite “cost-push” shock defined as ut ≡ c′ξξt + Ŷ ∗
t . We can

write (A.75) as

πt = κ[yt + ψ(τ̂t − τ̂ ∗t )] + βEtπt+1, (A.76)

39The constraint associated with a predetermined value for Zt0 can be neglected, in a
first-order characterization of optimal policy, because the variable Zt does not appear in
the first-order approximation to the aggregate-supply relation.
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where we have further defined

ut = u′ξξt ≡ Ŷ ∗
t + c′ξξt,

where

uξ1 ≡ Φωτ

qyΓ
s−1

d σ−1,

uξ2 ≡ Φσ−1s−1
d ωτ

qyΓ
− σ−1s−1

C Φ(1 + ωg + ωτ )

qyΓ
,

uξ3 ≡ −Φσ−2 (1 + ωτ )(1 + ωg)

qyΓ(ω + σ−1)
+ Φσ−2s−1

C

1 + ωg + ωτ

qyΓ(ω + σ−1)
,

uξ4 ≡ ωσuξ3,

uξ5 = −σuξ3 +
(1− Φ)

qy

,

We finally define

τ̂ ∗t ≡ −ψ−1ut

in a way that we can write (A.61)

πt = κ[(Ŷt − Ŷ ∗
t ) + ψ(τ̂t − τ̂ ∗t )] + βEtπt+1, (A.77)

which is equation (3.7) in the text.

A.9 The log-linear intertemporal solvency condition

and the “fiscal stress” disturbance term

The flow budget constraint (A.71) can be solved forward to yield the in-

tertemporal solvency condition

b̂t−1 − πt − σ−1yt = −ft + (1− β)Et

∞∑
T=t

βT−t[byyT + bτ (τ̂T − τ̂ ∗T )] (A.78)

where ft, the fiscal stress disturbance term, is defined as

ft ≡ σ−1(gt − Ŷ ∗
t )− (1− β)Et

∞∑
T=t

βT−t[byŶ
∗
T + bτ τ̂

∗
T + b′ξξT ]

= σ−1(gt − Ŷ ∗
t ) + (1− β)Et

∞∑
T=t

βT−t[ω−1
τ ΓŶ ∗

T − (b′ξ − bτψ
−1c′ξ)ξT ].
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This can be rewritten in a more compact way as

ft ≡ h′ξξt + (1− β)Et

∞∑
T=t

βT−tf ′ξξT ,

where

hξ1 ≡ −Φωτ

qyΓ

σ−2

sd

,

fξ1 ≡ Φ

qy

σ−1

sd

+
1

sd

,

hξ2 ≡ −Φσ−2s−1
d ωτ

Γqy

+
σ−2s−1

C Φ(1 + ωg + ωτ )

Γqy

,

fξ2 ≡ Φσ−1s−1
d

qy

− ω−1
τ σ−2s−1

C Φ(1 + ωg + ωτ )

ωτqy

+
1

sd

,

hξ3 ≡ Φσ−2 (1 + ωτ )(1 + ωg)

qyΓ
− Φσ−2s−1

C

1 + ωg + ωτ

qyΓ

+
(1− Φ)ωσ−1

qy

+
ωσ−1Φ(1 + ω)(1 + ωg)

Γqy

,

fξ3 ≡ ω−1
τ Γ(1− Φ)σ−1

qy

+
ω−1

τ σ−1Φ(1 + ω)(1 + ωg)

qy

− σ−1(1 + ω−1
τ )(1 + ωg),

hξ4 ≡ −σ−1(1− Φ)ω

qy

− σ−1ωΦ(1 + ω)(1 + ωg)

Γqy

,

fξ4 ≡ ω−1
τ Γ(1− Φ)ω

qy

+
ω−1

τ ωΦ(1 + ω)(1 + ωg)

qy

− ωω−1
τ (1 + ωg),

hξ5 ≡ σ−1Φ
(1 + ωg) (1 + ω)

qyΓ
,

fξ5 ≡ −ω−1
τ Φ

(1 + ωg) (1 + ω)

qy

+ ω−1
τ (1 + ωg).

A.10 Definition of the coefficients in sections 3, 4 and

5

The coefficients mϕ, nϕ, nb, mb, m̃b, ωϕ are defined as

mϕ ≡ −q−1
y ψ−1(1− β)bτ + q−1

y [(1− β)by + σ−1],

nϕ ≡ −q−1
y σ−1,
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nb ≡ bτ (ψ
−1 − 1)(mϕ + nϕ),

mb ≡ −nϕ[(1− β)bτψ
−1 − (1− β)by − σ−1],

m̃b ≡ σ−1nϕ + ωϕ − (1− β)[bτψ
−1 − by]nϕ + (1− β)ψ−1κ−1bτωϕ,

ωϕ ≡ −q−1
π (κ−1(1− β)bτψ

−1 + 1),

φ ≡ κ−1q−1
π qy,

γ1 ≡ κ−1q−1
π [(1− β)by + σ−1],

γ2 ≡ κ−1q−1
π σ−1.

The coefficients µ1 and µ2 of section 5 are defined as

µ1 ≡ κψ

(1− β)bτ + κψ

µ2 ≡ κ(1− β)(bτ − ψby)

(1− β)bτ + κψ
.

A.11 Proof of determinacy of equilibrium under the

optimal targeting rules

We now show that there is a determinate equilibrium if policy is conducted

so as to ensure that the two target criteria

Etπt+1 = 0 (A.79)

and

∆yt + ω−1
ϕ (mϕ + nϕ)πt − ω−1

ϕ nϕ∆πt = 0 (A.80)

are satisfied in each period t ≥ t0. Note that (A.80) can be written as

∆yt = γ3πt + γ4πt−1 (A.81)

where

γ3 ≡ −ω−1
ϕ mϕ,

γ4 ≡ −ω−1
ϕ nϕ.
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Use (A.79), combined with

τt − τ̂ ∗t = κ−1πt − ψ−1yt − κ−1βEtπt+1. (A.82)

and

Et∆yt+1 = −ω−1
ϕ nϕπt

to eliminate Etπt+1, Etyt+1 and τt − τ̂ ∗t from

b̂t−1 − πt − σ−1yt + ft = (1− β)[byyt + bτ (τ̂t − τ̂ ∗t )]

+ βEt[b̂t − πt+1 − σ−1ŷt+1 + ft+1].

Then further use (A.80) to eliminate yt from the resulting expression. One

obtains an equation of the form

b̂t = β−1b̂t−1 + m41πt + m42πt−1 + m43yt−1 + εt,

where εt is an exogenous disturbance. The system consisting of this equation

plus (A.80) and (A.79) can then be written as

Etzt+1 = Mzt + Nεt,

where

zt ≡




πt

πt−1

yt−1

b̂t−1


 , M ≡




0 0 0 0

1 0 0 0

m31 m32 1 0

m41 m42 m43 β−1


 , N ≡




0

0

0

n41


 .

Because M is lower triangular, its eigenvalues are the four diagonal ele-

ments: 0, 0, 1, and β−1. Hence there is exactly one eigenvalue outside the

unit circle, and equilibrium is determinate (but possesses a unit root). Be-

cause of the triangular form of the matrix, one can also easily solve explicitly

for the elements of the left eigenvector

v′ = [v1 v2 v3 1]

associated with the eigenvalue β−1, where

v1 = (1 + ωg)[ψ
−1 − 1]βγ4 − (1− βσ−1γ4)− (1− β)(1 + ωg)(κψ)−1

+(1 + ωg)[ψ
−1 − 1]γ3,
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v2 = (1 + ωg)[ψ
−1 − 1]γ4,

v3 = (1 + ωg)[ψ
−1 − 1].

Pre-multiplying the vector equation by v′, one obtains a scalar equation with

a unique non-explosive solution of the form

v′zt = −
∞∑

j=0

βj+1Etεt+j.

In the case that v1 6= 0, this can be solved for πt as a linear function of

πt−1, yt−1, b̂t−1 and the exogenous state vector as it follows

πt = − 1

v1

b̂t−1 − v2

v1

πt−1 − v3

v1

yt−1 +
1

v1

ft. (A.83)

The solution for πt can then be substituted into the above equations to obtain

the equilibrium dynamics of yt and b̂t as well, and hence of τt also.
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