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Abstract

In recent years, the learnability of rational expectations equilibria (REE) and de-
terminacy of economic structures have rightfully joined the usual performance criteria
among the sought-after goals of policy design. Some contributions to the literature,
including Bullard and Mitra (2001) and Evans and Honkapohja (2002), have made
significant headway in establishing certain features of monetary policy rules that facil-
itate learning. However a treatment of policy design for learnability in worlds where
agents have potentially misspecified their learning models has yet to surface. This pa-
per provides such a treatment. We begin with the notion that because the profession
has yet to settle on a consensus model of the economy, it is unreasonable to expect
private agents to have collective rational expectations. We assume that agents have
only an approximate understanding of the workings of the economy and that their
learning the reduced forms of the economy is subject to potentially destabilizing per-
turbations. The issue is then whether a central bank can design policy to account for
perturbations and still assure the learnability of the model. Our test case is the stan-
dard New Keynesian business cycle model. For different parameterizations of a given
policy rule, we use structured singular value analysis (from robust control theory) to
find the largest ranges of misspecifications that can be tolerated in a learning model
without compromising convergence to an REE.
In addition, we study the cost, in terms of performance in the steady state of a

central bank that acts to robustify learnability on the transition path to REE. (Note:
This paper contains full-color graphics)

• JEL Classifications: C6, E5.
• Keywords: monetary policy, learning, E-stability, learnability, robust control.
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Non-technical summary

Since the catalyst of John Taylor�s 1993 article, there have been a �ood of papers on the

design of simple monetary policy rules. Much has been learned about how such rules perform

in various models for a variety of economies. More recently, the issue of model uncertainty

and its normative e¤ects on policy design has come to the forefront of consideration. Nowhere

is this issue more important than in Europe where assumptions about economic structure in

decades past have come under critical scrutiny as some of Europe�s key economies sputter

economically, and where the advent of the European Union, with its goal, in part, of inducing

economic change having the inevitable e¤ect of producing uncertainty along the transition

path. It is no longer considered su¢ cient that a proposed rule perform well in a given model;

rather that rule must exhibit a wider range of attributes.

Among these attributes, the learnability of rational expectations equilibria (REE) and

determinacy of economic structures have rightfully joined the usual performance criteria. An

economy is said to be determinate if it supports a unique rational expectations equilibrium.

An economy is said to be learnable (or equivalently, E-stable) if agents that must learn the

model�s structure will arrive upon a REE as the outcome of the process of learning. However,

neither determinacy or learnability is entirely straightforward to achieve. The satisfaction of

the so-called Taylor principle� setting the feedback coe¢ cient on in�ation in a Taylor-type

rule to a value greater than unity� is neither necessary nor su¢ cient for determinacy for a

number of arguably sensible macroeconomic models.

Some contributions to the literature, including Bullard and Mitra (2001) and Evans and

Honkapohja (2002), have made signi�cant headway establishing certain features of monetary

policy rules that facilitate learning. At the same time, however, in all contributions of which

we are aware the method by which agents are assumed to learn is taken as given, with the

assumed method�usually either least-squares or constant-gain learning�chosen more for its

analytical tractability than its plausibility or empirical foundation. An treatment of policy

design for learnability in worlds where agents� learning rules are potentially misspeci�ed

seems overdue. This paper provides such a treatment.
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model of the economy, it is unreasonable to expect private agents to have collective rational

expectations. We assume that agents have only an approximate understanding of the work-

ings of the economy and that their learning the reduced forms of the economy is subject to

potentially destabilizing perturbations. The issue is then whether a central bank can design

policy to account for perturbations and still assure the learnability of the model. We provide

two test cases. The �rst is Cagan�s very simple model of hyperin�ation, a choice that allows

us to work out some analytical results. However, since one of our goals is the provision of

practical tools, our second test case is the standard New Keynesian business cycle (NKB)

model, which despite its small size requires numerical solutions. Here we compare and

contrast three kinds optimized Taylor-type rules� lagged data rules, contemporaneous data

rules, and forecast-based rules� against their robust counterparts. For di¤erent parameteri-

zations of a given policy rule, we use structured singular value analysis (from robust control

theory) to �nd the largest ranges of misspeci�cations that can be tolerated in a learning

model without compromising convergence to an REE. In addition, we study the cost, in

terms of steady-state performance of a central bank that acts to robustify learnability on

the transition path to REE.

Our �nding con�rm the Bullard-Mitra result that persistence in policy setting in the

NKB model� as captured by a coe¢ cient somewhat above unity on the lagged policy rate

in an extended Taylor-type rule� is useful for ensuring learnability, in rules that feedback on

lagged or current data. At the same time, however, we also �nd that it is possible to go too

far; as the coe¢ cient on the lagged funds rate climbs well above unity, the robustness of the

resulting rule deteriorates. For in�ation-forecast based policy rules, the answers are quite

di¤erent. A robust rule is not very persistent at all. Moreover, the regions of indeterminacy

are sometimes large and not very intuitive in terms of their locations.

Lastly we show that robustifying learnability comes at a small price in terms of forgone

performance in the rational expectations equilibrium. (Note: This paper contains full-color

graphics and is best viewed and printed in color.)
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1 Introduction

It is now widely accepted that policy rules–and in particular, monetary policy rules–should

not be chosen solely on the basis of their performance in a given model of the economy. There

is simply too much uncertainty about the true structure of the economy to warrant taking

the risk of so narrow a criterion for selection. Rather, policy should be designed to operate

"well" in a wide range of models. There has been substantial progress in a relatively short

period of time in the literature on robustifying policy. The first strand of the literature

examines the performance of rules given the presence of measurement errors in either model

parameters or unobserved state variables.1 The second strand focuses on comparing rules in

rival models to see if their performance spanned reasonable sets of alternative worlds.2 The

third considers robustifying policy against unknown alternative worlds, usually by invoking

robust control methods.3

At roughly the same time, another literature was developing on the learnability (or E-

stability) of models.4 The learnability literature takes a step back from rational expectations

and asks whether the choices of uninformed private agents could be expected to converge on a

rational expectations equilibrium (REE) as the outcome of a process of learning. Important

early papers in this literature include Bray [5], Bray and Savin [6] and Marcet and Sargent

[33]. Evans and Honkapohja summarize some of their many contributions to this literature

in their book [17].

The question arises: could monetary policy help or hurt private agents learn the REE?

The common features of the robust policy literature include, first, that it is the government

that does not understand the true structure of the economy, and second, that the govern-

ment’s ignorance will not vanish simply with the collection of more data.5 By contrast, in the

1 Brainard [4] is the seminal reference. Among the many, more recent references in this large literature
are Sack [40], Orphanides et al. [38], Soderstrom [42] and Ehrmann and Smets [16].

2 See, e.g., Levin et al. [28] and [29].
3 Hansen and Sargent [26] and [27], Tetlow and von zur Muehlen [46] and Coenen [13]. These strands of

the robustness literature are named in the text in chronological order but the three methods should be seen
as complementary rather than substitutes.

4 In this paper, as in most of the rest of the literature, the terms learnability, E-stability and stability
under learning will all be used interchangeably. These terms are distinct from stable—without the "E-" or
"under learning" added—which should be taken to mean saddle-point stable. The term saddle-point stable,
determinate and regular are taken as equivalent adjectives describing equilibria.

5 The concept of "truth" is a slippery one in learning models. In some sense, the truth is jointly determined
by the deep structural parameters of the economy and what people believe them to be. Only in steady state,
and then only under some conditions, will this be solely a function of deep parameters and not of beliefs.
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learning literature it is usually the private sector that is assumed not to have the information

necessary to form rational expectations, but this situation has at least the prospect of being

alleviated with the passage of time and the collection of more data. In this paper, we take

the robust policy rules literature and marry it with the learnability literature.

Since the profession has been unable to agree on a generally acceptable workhorse model

of the economy, it is unreasonable to expect private agents to have rational expectations

at all points in time. The most that one can expect is that agents have an approximate

understanding of the workings of the economy and that they are on a transition path toward

learning the true structure. And as Evans and McGough [21] show, designing policy as if

the process of learning has already been completed can result in indeterminacy or unstable

equilbria. So we retain the assumption of adaptive learning that is common with most

contributions to this literature.

If the presumption of rational expectations is questionable, and the hazards of learning

cannot be ignored, then from a policy perspective, it follows that the job of facilitating the

transition to REE is logically prior to the job of maximizing the performance of the economy

once the transition is complete. In this paper, we consider two issues. The first is how a

policy maker might choose policy to maximize the set of worlds inhabited by private agents

that are able to learn the REE. The second is an assessment of the welfare cost of assuring

learnability in terms of forgone stability in equilibrium. Or, put differently, we measure

the welfare cost of learnability insurance. Each of these questions is important. In worlds

of model uncertainty, an ill-chosen policy rule—or policy maker—could lead to explosiveness

or indeterminacy. At the same time, excessive concern for learnability will imply costs in

terms of forgone welfare.

Ours is not the first paper to consider the issue of choosing monetary policies for their

ability to deliver determinacy and learnability. Bernanke and Woodford [2] argue that

inflation-forecast-based (IFB) policy rules—that is, rules that feed back on forecasts of future

output or inflation—can lead to indeterminacy in linear rational expectations (LRE) models.

Clarida, Gali and Gertler [11] show that violation of the so-called Taylor principle in the

Nevertheless, in this paper, when we refer to a "true model" or "truth" we mean the REE upon which
successful learning eventually converges.
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context of an IFB rule may have been the source of the inflation of the 1970s.6 Bullard

and Mitra [8] in an important paper show that higher persistence in instrument setting—

meaning a large coefficient on the lagged instrument in a Taylor-type rule—can facilitate

determinacy in the same class of models. Evans and Honkapohja [19] note similar problems

in a wider class of rules and argue for feedback on structural shocks, although questions

regarding the observability of such shocks leave open the issue of whether such a policy is

implementable. Evans and McGough [21] compute optimal simple rules conditional on their

being determinate in rival models. Each of these papers makes an important contribution to

the literature, but all are special cases within broader sets of policy choices. In this paper,

we follow a somewhat different approach and consider the design of policies to maximize

learnability of the economy.

The remainder of the paper is organized as follows. The second section lays out the theory,

beginning with a review of the literature on least-squares learnability and determinacy, and

following with methods from the robust control literature. Section 3 introduces the models

with which we work, beginning with the case of the very simple Cagan model of money

demand in hyperinflations and then moving on to the New Keynesian business cycle (NKB)

model. For the NKB model, we study the design of time-invariant simple monetary policy

rules to robustify learnability of three types: a lagged-information rule, a contemporaneous

information rule and a forecast-based policy rule. We close the section by covering the

insurance cost of robustifying learnability. A fourth and final section sums up and concludes.

2 Theoretical overview

2.1 Expectational equilibrium under adaptive learning

The theory of E-stability or learnability in linear rational expectations models dates back

more than 20 years to Bray [5] who showed that agents using recursive least squares would,

if the arguments to their regressions were properly specified, eventually converge on the

correct REE. This convergence property gave a considerable shot in the arm to rational

6 Levin et al. [29] and Batini and Pearlman [1] study the robustness properties of different types of
inflation-forecast based rules for their stability and determinacy properties.
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expectations applications since proponents had an answer to the question "how could people

come to have rational expectations?" The theory has been advanced by the work of Marcet

and Sargent [33] and Evans and Honkapohja [various]. Our rendition follows Evans and

Honkapohja [17], chapters 8-10.

Begin with the following linear rational expectations model:

yt = A+MEtyt+1 +Nyt−1 + Pvt, (1)

where yt is a vector of n endogenous variables, including, possibly, policy instruments, and vt

comprises allm exogenous variables. Equation (1) is general in that both non-predetermined

variables, Etyt+1,and predetermined variables, yt−1, are represented. By defining auxiliary

variables, e.g., yjt = yt+j, j 6= 0, arbitrarily long (finite) lead or lag lengths can also be

accommodated. Finally, extensions to allow lagged expectations formation; e.g., Et−1yt,

and exogenous variables are straightforward to incorporate with no significant changes in

results. Next, define the prediction error for yt+1, to be ξt+1 = yt+1 − Etyt+1. Under

rational expectations, Etξt+1 = 0, a martingale difference sequence. Evans and Honkapohja

[17] show that for at least one rational expectations equilibrium to exist, the stochastic

process, yt, that solves (1), must also satisfy:

yt+1 = −M−1A+M−1yt −M−1Nyt−1 −M−1Pvt + ξt+1 (2)

We can express (2) as a first-order system:

∙
yt+1
yt

¸
=

∙
−M−1A
0

¸
+

∙
M−1 −M−1N
In 0

¸ ∙
yt
yt−1

¸
+

∙
−M−1

0

¸
Pvt +

∙
1
0

¸
ξt+1

or, rewriting:

Yt+1 = F +BYt + Cvt +Dξt+1, (3)

where Y = [yt, yt−1]
0. Then we can easily show when (3) satisfies the Blanchard-Kahn

[3] conditions for stability, namely, that the number of characteristic roots of the matrix

B of norm less than unity equal the number of predetermined variables (taking yt to be

scalar, this is one), then the model is determinate, and there is just one martingale difference

sequence, �t+1, that will render (2) stationary; if there are fewer roots inside the unit circle

than there are predetermined variables, the model is explosive meaning that there is no
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martingale difference sequence that will satisfy the system; and if there are more roots inside

the unit circle than there are predetermined variables, the model is said to be indeterminate,

and there are infinite numbers of martingale difference sequences that make (2) saddle-

point stable. The roots of B are determined by the solution to the characteristic equation:

λ2 −M−1λ+M−1N = 0.

Determinacy is one thing, learnability is quite another. As Bullard and Mitra [8] have

emphasized, determinacy does not imply learnability, and indeterminacy does not imply

a lack of learnability. We can address this question by postulating a representation for

the REE that a learning agent might use. For the moment, we consider the minimum

state variable (MSV) representation, advanced by McCallum [34]. Let us assume that vt is

observable and follows a first-order stochastic process,

vt = ρvt−1 + �t,

where �t is an iid white noise process. The ρ matrix is assumed to be diagonal.

Under these assumptions, we can write the following perceived law of motion (PLM):

yt = a+ byt−1 + cvt. (4)

Rewrite equation (1) slightly, and designate expectations formed using adaptive learning

with a superscripted asterisk on the expectations operator, E∗t :

yt = A+ME∗t yt+1 +Nyt−1 + Pvt. (5)

Then, leading (4) one period, taking expectations, substituting (4) into the result, and finally

into (5), we obtain the actual law of motion, (ALM), the model under the influence of the

PLM :

yt = A+M(I + b)a+ (N +Mb2)yt−1 + (M(bc+ cρ) + P )�t. (6)

So the MSV solution will satisfy the mapping from PLM to ALM:

A+M(I + b)a = a,

N +Mb2 = b,

M(bc+ cρ) + P = c.
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Learnability depends then on the mapping of the PLM on to the ALM, defined from (6):

T (a, b, c) = [A+M(I + b)a,N +Mb2,M(bc+ cρ) + P ] (7)

The fixed point of this mapping is a MSV representation of a REE, and its convergence is

given by the matrix differential equation:

d

dτ
(a, b, c) = T (a, b, c)− (a, b, c). (8)

Convergence is assured if certain eigenvalue conditions for the following matrix differential

equations are satisfied.

da

dτ
= [A+M(I + b)]a− a, (9)

db

dτ
= Mb2 +N − b,

dc

dτ
= M(bc+ cρ) + P − c.

As shown by Evans and Honkapohja (2001), the necessary and sufficient conditions for E-

stability are that the eigenvalues of the following matrices have negative real parts:

DTa − I = M(I + b)− I,

DTb − I = b0 ⊗M + I ⊗Mb− I,

DTc − I = ρ0 ⊗M + I ⊗Mb− I.

The important points to take from equations (9) are that the conditions are generally

multivariate in nature–meaning that the coefficients constraining the intercept term, a, can

be conflated with those of the slope term, b, and that the coefficients of both the PLM and the

ALM come into play. Learnability applications in the literature to date have been confined

to very simple, small-scale models where these problems rarely come into play.7 In the kind

of medium- to large-scale models that policy institutions use, these issues cannot be safely

ignored.8 Without taking away anything from the important contributions of Bullard and
7 A notable exception is Garratt and Hall [22], but even then the learning problem was constrained to

exchange rate determination. The rest of the London Business School model that they used was taken as
known.

8 At the Federal Reserve Board, for example, the staff use a wide range of models to analyze monetary
policy issues, including a variety of reduced-form forecasting models, a calibrated multi-country DSGE
model called SIGMA, a medium-scale DSGE U.S. model, and the FRB/US model, a larger-scale, partly
micro-founded estimated model.
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Mitra [8] and Evans and Honkapohja [19], the choice of monetary policy rules must not only

consider how they foster learnability in a given model but whether they do so for the broader

class of models within which the true learning model might be found. Similarly, taking as

given the true model, the initial beliefs of private agents can affect learnability both through

the inclusion and exclusion of states to the PLM and through the initial values attached to

parameters. In the context of the above example, values of a, b, and c that are initially "too

far" from equilibrium can block convergence. The choice of a particular policy can shrink

or expand the range of values for a, b, and c that is consistent with E-stability.9 This is

our concern in this paper: how can a policy maker deal with uncertainty in agents’ learning

mechanisms in the choice of his or her policy rule and thereby maximize the prospect that

the economy will converge successfully on a rational expectations equilibrium? For this, we

work with perturbations to the T-mapping described by equations (8) or systems like it. We

take this up in the next subsection.

2.2 Structured robust control

In the preceding subsection, we outlined the theory of least-squares learning in a relatively

general setting. In this subsection we review some useful methods from robust control

theory. Recall that our objective is to uncover the conditions under which monetary policy

can maximize the prospect that the process of learning will converge on a REE–that is, to

robustify learnability–so the integration of the theories of these two subsections is what will

provide us with the tools we seek.

The argument that private agents might have to learn the true structure of the economy

takes a useful step back from the assumption of known and certain linear rational expecta-

tions models. However, what the literature to date has usually taken as given is, first, that

agents use least-squares learning to adapt their perceptions of the true economic structure,

and second, that they know the correct linear or linearized form of the REE solution.10 Both

of these assumptions can be questioned. It is a common-place convenience of macroecono-

9 In fact, in this example, the intercept coefficient, a, turns out to be irrelevant for the determination of
learnability, although this result is not general.
10 Evans and Honkapohja [17] survey variations on least-squares learning, including under- and over-

parameterized learning models and discounted (or constant-gain) least squares learning. Still, in general,
either least-squares learning or constant gain learning is assumed. An exception is Marcet and Nicolini [32].

13
ECB

Working Paper Series No. 593
February 2006



mists to formulate a dynamic stochastic general equilibrium model and then linearize that

model. It is certainly possible that ill-informed agents use only linear approximations of

their true decision rules. But it is hard to argue that the linearized decision rule is any more

valid than some other approximation. Similarly, least-squares learning is the subject of re-

search more because of its analytical tractability than its empirical plausibility. The utility

of tractable, linear formulations of economic forms is undeniable; at the same time, however,

the risk in over reliance on such forms should be just as apparent. There would appear to

be a least a prima facie case for retaining the simplicity of linear state-space representations

and linear rules, while taking seriously the consequences of such approximations.

With this in mind, we retain the assumption of a linear reference model, and least-

squares learning on the part of agents, but assume that the process of learning is subject

to uncertainty. Such uncertainty may arise because agents take their decision rules as

simplifications of truly optimal decision rules due to the complexity of such rules. Attributing

model uncertainty to agents can also be justified if we assume that least-squares learning is

untenable in worlds where agents pick and choose the information to which they respond

in forming and updating beliefs. The point is that from the perspective of the monetary

authority, there are good reasons to be wary of both the assumed learning rules and the

underlying models, and yet there is very little guidance on how to model those doubts. We

motivate the present approach by positing a central bank that is concerned about ensuring

learnability of the true model when learning is to subject errors, the distributions of which

are unknown. Accordingly, we analyze these doubts using only a minimum amount of

structure, drawing on the literature on structured model uncertainty and robust control.

For the most part, treatments of robust control have regarded model uncertainty as

unstructured, that is, as uncertainty not ascribed to particular features of the model but

instead represented by one or more additional shock variables wielded by some "evil agent"

bent on causing harm.11 The approach taken here differs in that we consider a central

bank worried about how large agents’ learning errors can be before learning fails to drive the

economy towards eventual equilibrium. The central bank will employ techniques of robust

11 See, in particular, Sargent [41], Giannoni [24], Hansen and Sargent ([26], [27]), Tetlow and von zur
Muehlen ([45], [46]), Onatski and Stock [36], and Onatski and Williams [37].
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control to set the parameters of her policy rule in a way that makes room for the largest

degree of estimation errors by agents without rendering the true model unlearnable. To

develop strategies for setting policies that determine maximum allowable misspecifications

in agents’ learning models while keeping the economy just shy of becoming unlearnable, we

need to consider structured model uncertainty. Structured model uncertainty shares with

its unstructured sibling a concern for uncertainty in the sense of Knight–meaning that the

uncertainty is assumed to be nonparametric. But structured robust control differs in that

it associates the uncertainty with perturbations to particular parts of the model. More

importantly, to such perturbations we can assign a variety of structures, including time-

series specifications. Work in this field was initiated by Doyle [15] and further developed

in Dahleh and Diaz-Bobillo [52] and Zhou et al. [51], among others. Recent applications

of this strand of robust control to monetary policy can be found in Onatski and Stock [36],

Onatski [35], and Tetlow and von zur Muehlen [45].

While most contributions to the literature on monetary policy have been concerned with

maximizing economic performance, our concern is maximizing the prospects for learnability.

Thus our metric of success is not the usual one of maximized utility or a quadratic approxi-

mation thereof, although we will have a look at the "insurance premium" for robustness.

Boiled down to its essence, the five steps to designing policies subject to the constraint

that agents must adapt to those policies and a learning model that may be misspecified are:

1. Write down a structural model of the economy and compute the conditions necessary

for the model to attain a unique saddle-point stationary equilibrium.

2. Given the structural model, formulate the central bank’s depiction of the perceived

law of motion used by agents to learn the structural model. Substitute this into the

structural model to arrive at the actual law of motion. We refer to this as the reference

model. While the reference model is the central bank’s best guess of the ALM, the

bank understands that the reference model is only an approximation of the true ALM,

and doubts remain about its local accuracy.12

12 It is sometimes argued that robust control–by which people mean minmax approaches to model
uncertainty–is unreasonable on the face of things. The argument is that the worst-case assumption is
too extreme, that to quote a common phrase, "if I worried about the worst case outcome every day, I
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3. Specify a set of perturbations to the reference model structured in such a way as to

isolate the possible misspecifications to which the reference model is regarded to be

most vulnerable.

4. For a given policy, use structured singular value analysis to determine the maximum

allowable perturbations to the ALM that will bring the economy up to, but not beyond,

the point of E-instability.

5. Finally, compute the policy for which the allowable range of misspecifications is the

largest.

When, in the agents’ learning model–the MSV-based PLM described in (4)–the pa-

rameters a, b, and c or Π, have been correctly estimated by agents, this model should be

considered to be the true reduced form of the structural model in (1). Note, however, that

even if individuals manage to specify their learning model correctly in terms of included vari-

ables and lag structures, the expectations of future output and inflation they base on these

estimates are (at best) in a period of transition towards being truly rational. The model

that agents actually estimate may differ from (1) in various ways that may be persistent.

We want to determine how far off the true model agents’ learning model can become before

it becomes in principle unlearnable.

To begin, we rewrite the ALM from (6) and vectorize the disturbance, �t, to emphasize

the stochastic nature of the estimating problem faced by agents,

Yt+1 = ΠYt +e�t,
where Yt = [1, yt−1, vt]0 is of dimension n+ 1, e�t = [ 0 0 �t ]0 and

Π =

"
1 0 0

A+M(I + b)a (N +Mb2) M(bc+ cρ) + P
0 0 ρ

#
.

Notice that by using the ALM, we are modeling the problem from the policy authority’s

point of view. The authority is taken as knowing, up to the perturbations we are about to

wouldn’t get out of bed in the morning". Such remarks miss the point that the worst-case outcome should
be thought of as local in nature. Decision makers are envisioned as wanting to protect against uncertainties
that are empirically indistinguishable from the data generating process underlying their reference models.
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add to the model, the structure of private agents’ learning problems. As a consequence, the

authority is in a position to influence the resolution of that problem.

Potential errors in parameter estimation are then represented by a perturbation block, ∆.

In principle, the ∆ operator can be structured to implement a variety of misspecifications,

including alternative dynamic features. Robust control theory is remarkably rich in how it

allows one to consider omitted lag dynamics, inappropriate exogeneity restrictions, missing

nonlinearities, and time variation. This being the first paper of its kind, we keep our goals

modest: in the language of linear operator theory, we will confine our analysis to linear

time-invariant scalar (LTI-scalar) perturbations. LTI-scalar perturbations represent such

events as one-time shifts and structural breaks in model parameters, as agents perceive them.

Such perturbations have been the subject of study of parametric model uncertainty; see, e.g.,

Bullard and Euseppi [7].13 With this restriction, the perturbed model becomes:14

e�t = Yt+1 − [Π+W1∆W2]Yt,

= [Q−W1∆W2]Yt, (10)

where Q = InL
−1 − Π, L is the lag operator, ∆ is a k × k linear, time-invariant block-

diagonal operator representing potentially destabilizing learning errors, andW1 and W2 are,

respectively, (n+1)×k and k× (n+1) selector matrices of zeros and ones that select which

parameters in which equations are deemed to be subject to such errors. Either W1 or W2

can, in addition, be chosen to attach scalar weights to the individual perturbations so as to

reflect relative uncertainties with which model estimates are to be regarded. The second line

is convenient for analyzing stability of the perturbed model under potentially destabilizing

learning errors. Using this construction, the perturbation operator, ∆, and the weighting

matrices can be structured so that misspecifications are focused on particular features of the

model deemed especially susceptible to learning errors involving the model’s variables for

any chosen lag or lags.

The essence of this paper is to find out how large, in a sense to be defined presently,

the misspecifications represented by the perturbations in (10)–called the radius of allowable

13 See Evans and Honkapohja [17] for some treatment of learning with an over-parameterized PLM.
14 Multiplicative errors in specification would be modeled in a manner analagous to (10): �t = [A(1 −

W1∆W2)]Yt.
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perturbations–can become without eliciting a failure of convergence to rational expectations

equilibrium. Any policy that expands the set of affordable perturbations is one that allows

the widest room for misspecifications committed by agents and thus offers an improved

chance that policy will not be destabilizing. To do this we bring the tools of structured

robust control analysis mentioned earlier.

Let D denote the class of allowable perturbations to the set of parameters of a model

defined as those that carry with them the structure information of the perturbations. Let

r > 0 be some finite scalar and define Dr as the set of perturbations in (10) that obey

||∆|| < r, where ||∆|| is the induced norm of ∆ considered as an operator acting in a normed

space of random processes15. The scalar, r, can be considered a single measure of the

maximum size of errors in estimation. A policy authority wishing to operate with as much

room to maneuver as possible will act to maximize this range. For the tools to be employed

here, norms will be defined in complex space. In what follows, much use is made of the

concept of maximum singular value, conventionally denoted by σ16. For reasons that will

become clearer below, the norm of ∆ that we shall use will be the L∞ norm of the function

∆(eiω), defined as the largest singular value of ∆(eiω) on the frequency range ω ∈ [−π, π]:

||∆||∞ = {sup
ω
max eig[∆0(e−iω)∆(eiω)]}1/2, (11)

where max ·eig denotes the maximum eigenvalue. The choice of ||∆||∞ as a measure of

the size of perturbations conveys a sense that the authority is concerned with worst-case

outcomes.

Imagine two artificial vectors, ht = [h1t, h2t, ..., hkt]0 and pt = [p1t, p2t, ..., pkt]
0, connected

15 Induced norms are defined as follows. Let X be a vector space. A real-valued function || · || defined on
X is said to be a norm on X if it satisfies: (i) ||x|| ≥ 0, (ii) ||x|| = 0 only if x = 0, (iii) ||αx|| =| α | ||x|| for
any scalar α, (iv) ||x+ y|| ≤ ||x||+ ||y|| for any x ∈ X and y ∈ X. For x ∈ Cn, the Lp vector p-norm on x

is defined as ||x||p = (
Pn

i=1 |xi|p)1/p, where 1 ≤ p ≤ ∞. For p = 2, L2 = ||x||2 =
pPn

i=1 |xi|2, that is, the
quadratic problem. Corresponding to L2,we also have L1 =

Pn
i=1 |xi|, and L∞ = max1≤i≤1 |xi|. Finally, let

A = [aij] ∈ Cm×n in an equation yt = Atxt, where xt may some random vector. The matrix norm induced
by a vector p-norm, ||x||p, is ||A||p ≡ supx6=0

||Ax||p
||x||p . Note that for p = 2, ||A||2 =

p
max eig(A ·A)and

||A||1 = max1≤j≤n
Pn

i=1 |aij |. More details are given in Tetlow and von zur Muehlen [45].
16 As is apparent from the expression in (11), the largest singular value, σ(X), of a matrix, X, is the

largest eigenvalue of X 0X.
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to each other and to Yt via17

pt = W2Yt

ht = ∆ · pt.

Then we may recast the perturbed system (10) as the augmented feedback loop18∙
Yt+1
pt

¸
=

∙
Π W1

W2 0

¸ ∙
Yt
ht

¸
, (12)

ht = ∆ · pt. (13)

A reduced-form representation of this loop (from ht to Yt and pt) is the transfer function∙
Yt
pt

¸
=

∙
G1

G2

¸
ht, (14)

where G1 = (InL
−1 −Π)−1W1, and G2 =W2(InL

−1 −Π)−1W1 is a n× k matrix, where k is

the number of diagonal elements in ∆. As we shall see, the stability of the interconnection

between ht and pt, representing a feedforward pt = G2ht and a feedback ht = ∆·pt, is critical.

Note first that, together, these two relationships imply the homogenous matrix equation

0 = (Ik −G2∆)pt. (15)

An E-stable ALM is also dynamically stable, meaning that Π has all its eigenvalues inside

the unit circle. To make this link, the following theorem is critical.

Theorem 1 The Small Gain Theorem.

Let Re(s) denote the real part of s ∈ C, where C is the field of complex numbers, and

let H∞ denote the set of L∞ functions analytic in Re(s) > 0. Furthermore, let RH∞
designate the set of real, rational values in the H∞-normed space. Suppose G2 ∈ RH∞ and

r > 0. Then the interconnected system in (12)-(13) is well posed and internally stable for

all ∆(s) ∈ RH∞ with

(a) ||∆|| ≤ 1/r, if and only if ||G2(s)||∞ < r,

(b) ||∆|| < 1/r, if and only if ||G2(s)||∞ ≤ r.

17 See Dahleh and Bobillo [14], chapter 10.
18 Because the random errors in this model play no role in what follows, we leave out the � vector.
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Proof: See Zhou and Doyle,[52] p. 137. ¤

By assumption, Q, defined in (10), is invertible on the unit circle, allowing us to write19

det(Q)det(Ik −G2∆) = det(Q)det(Ik −W2Q
−1W1∆)

= det(Q)det(Ik −Q−1W1∆W2)

= det(Q−W1∆W2).

The preceding expressions establish the link between stability of the interconnection, G2,

and stability of the perturbed model: if det(Ik −G2∆) = 0, then the perturbed model (10)

is no longer invertible on the unit circle, hence unstable, and vice versa. Thus, any policy

rule that stabilizes the G2 also stabilizes the augmented system (12)-(13). The question

to be asked then is how large, in the sense ||.||∞, can ∆ become without destabilizing the

feedback system (12)-(13).

The settings we consider involve linear time-invariant perturbations, where the object is

to find the minimum of the largest singular value of the matrix, ∆, from the class of Dr such

that I − G2∆ is not invertible. The inverse of this minimum, expressed in the frequency

domain, is the structured singular value20 of G2 with respect toDr, defined at each frequency,

ω ∈ [−π, π],

μ[G2(e
iω)] =

1

min{σ̄[∆(eiω)] : ∆ ∈ Dr, det(I −G2∆)(eiω) = 0}
, (16)

with the provision that if there is no ∆ such that det(I−G2∆)(e
iω) = 0, then μ[G2(e

iω)] = 0.

The small gain theorem then tells us that, for some r > 0, the loop (12)-(13) is well posed

and internally stable for all ∆(.) ∈ Dr with ||∆|| < r, if and only if supω∈R μ[G2(e
iω)] ≤ 1/r.

Let φ denote a vector of policy parameters.

Thus we can now formally state the problem that interests us as seeking a best φ = φ∗

by finding a maximum value of μ = μ, satisfying

μ(φ∗) = inf
φ
sup
ω∈R

μ[G2(e
iω)]

19 The small gain theorem links the stability of the loop between p and h under perturbations to the
full system subject to model uncertainty. For some sufficiently large number r, such that ||∆||∞ < r,
the determinant det(Ik − G2∆) 6= 0. Now raise r to some value r such that det(Ik − G2∆) = det(Ik −
W2Q

−1W1∆) = 0.
20 The singular value is said to be "structured" in recognition of structure built into the perturbation

matrix, ∆. Through selection of the structure, ∆ can encompass uncertainties about one-time shifts in
selected parameters, unmodeled dynamics in parts of the model, and nonlinearities, among other things.
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subject to the satisfaction of the saddle-point stability condition for the relevant model.

The solution to this problem is not amenable to analytical methods, except in special

cases, an example of which we explore in the next section. Instead, we will employ efficient

numerical techniques to find the lower bound on the structured singular value. The minimum

of μ−1(G2) over ω ∈ [0, π] is exactly the maximal allowable range of misspecification for a

given policy. A monetary authority wishing to give agents the widest latitude for learning

errors that nevertheless allow the system to converge on REE selects those parameters in its

policy rule that yield largest value of r.

Figure 1 below provides a schematic representation of what is done. Given a policy rule,

the ALM (and hence the reference model) is represented by the transition matrix, Π. By

assumption it is in the stable and determinate region of the space. The central bank chooses

perturbation, ∆, to Π. The largest feasible perturbation, Π∗∆—the one that renders the

largest radius, r, defines a region shown by the ellipse within which any ALM, including

but not restricted to the reference model ALM, will converge on a rational expectations

equilibrium. The weights, W1 and W2, determine the shape of the ellipse. Perturbations

larger (in norm) than r will push the ellipse over the line into indeterminate or explosive

regions; smaller perturbations provide less robustness than the optimal one.

3 Two examples

We study two sample economies, one the very simple model of money demand in hyperinfla-

tions of Cagan [10], the other the linearized neo-Keynesian model originated by Woodford

([48], [49]), Rotemberg and Woodford [39] and Goodfriend and King [25]. Closed-form solu-

tions for μ, being non-linear functions of the eigenvalues of models, are not generally feasible.

However, some insight is possible through considering simple scalar example economies like

the Cagan model. The second has the virtue of having been studied extensively in the lit-

erature on monetary policy design. It thus provides some solid benchmarks for comparison.
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Figure 1: Schematic representation of robust learnability

3.1 A simple univariate example

Consider a version of Cagan’s monetary model, cited in Evans and Honkapohja [17], although

our rendition differs slightly. The model has two equations, one determining (the log of)

the price level, pt, and the other a simple monetary feedback rule determining the (log of

the) money supply,mt:

mt − pt = −κ(Etpt+1 − pt)

mt = χ− φpt−1.

Normally, all parameters should be greater than zero; for κ this means that money demand is

inversely related to expected inflation. We will relax this assumption a bit later. Combining

the two equations leads to:

pt = α+ βEtpt+1 − γpt−1, (17)

where α = χ/(1 + κ) , β = κ/(1 + κ), and γ = φ/(1 + κ). To set the stage for what follows,

let us consider the conditions for a unique rational expectations equilibrium. First off, we

will clearly want to assume that β, γ 6= 0 to avoid degenerate models. We will go a bit

further and assume that β − γ 6= 1, which is a mild invertibility assumption. We will also
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assume that κ 6= 0 and κ 6= −1. Finally, for simplicity we will focus on the case where

solutions are real. Standard methods then reveal:

βλ2i − λi − γ =
κ

1 + κ
λ2i − λi −

φ

1 + κ
= 0 (18)

where λi, i = 1, 2 are the eigenvalues of the quadratic equations associated with (17). As

is well known from Blanchard and Kahn [3], among other sources, Equation (18) is the

key to establishing existence and uniqueness of saddle-point equilibruim. Letting λ1 ≥ λ2,

without loss of generality, if 1 < λ2 ≤ λ1,then the model is explosive, meaning that there

are no initial conditions which can establish a saddle-point equilibrium; if λ2 ≤ λ1 < 1,

then the model is said to be irregular, meaning that every set of initial conditions leads to

a different equilibrium. Putting the same thing in different words, the equilibrium is said

to be indeterminate (or non-unique). Finally, the condition λ2 < 1 < λ1 is the condition

for saddle-point stability; that is, the condition by which all (local) sets of initial conditions

converge, in expectation, on the same equilibrium. In this instance, the equilibrium is said

to be determinate (or regular, or unique). Inspection of the equation to the right of the

first equality in equation (18) shows that the determinacy of the model is governed by the

interaction between the structural money-demand parameter, κ, and the policy feedback

parameter, φ.

Proposition 1 Assume that κ 6= −1. For κ > −1, determinacy requires: φ > −1 and

φ < 1 + 2κ. For κ < −1, determinacy requires φ < −1 and φ > 1 + 2κ.

Proof: Equation (18) means that | β − γ |=| (κ − φ)/(1 + κ) |< 1 is the condition for

exactly one eigenvalue to be above unity. There are two cases. Assume first that κ > −1,

which means that the denominator is always positive. Then simple arithmetic shows that

{φ, κ} ∈
©
R :

¯̄
κ−φ
1+κ

¯̄
< 1

ª
= {φ > −1} ∪ {φ < 1 + 2κ} is implied. Now consider κ < −1. In

this instance,{φ, κ} ∈
©
R :

¯̄
κ−φ
1+κ

¯̄
< 1

ª
= {φ < −1} ∪ {φ > 1 + 2κ} . ¤

Now let us assume that agents form expectations employing adaptive learning, and desig-

nate expectations formation in this way with the operator, E∗t . The perceived law of motion

for this model is assumed to be pt = a+ bpt−1—the minimum state variable (MSV) solution,
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implying E∗t pt+1 = (1+ b)a+ b2pt−1. The actual law of motion is found by substituting the

PLM into the structural model:

pt = [α+ βa(1 + b)] + (βb2 − γ)pt−1. (19)

Following the steps outlined earlier, the ALM is pt = Ta(a, b) + Tb(a, b)pt−1 where T defines

the mapping (
a
b
) = T (

a
b
). This is

Ta : a = α+ βa(1 + b) (20)

Tb : b = βb2 − γ. (21)

It is equation (21) that is key for the learnability of the model. But notice that (21) is

identical to equation (18) with b = λi. This means that the conditions for learnability and

determinacy are tightly connected in this particular model, as we shall discuss in detail

below. The solutions to equations (20) and (21) are:

a = α/[1− β(1 + b)] (22)

b = .5[1±
p
1 + 4βγ]/β. (23)

Equation (23) is quadratic with one root greater than or equal to unity, and the other

less than unity. Designate the larger of the two values for b as b+ and the smaller as b−.

Existence of the REE requires us to choose the smaller root; otherwise,b+ 1 b− > 1. The

ordinary differential equation system implied by this mapping is

d(
a
b
)

dτ
= T (

a
b
)− ( a

b
),

for which the associated DT matrix is derived by differentiating [ Ta Tb ]0 with respect to

a and b:

DT =

∙
β(1 + b) aβ
0 2βb

¸
.

The eigenvalues of DT − I are,

ψ1 = 2βb− 1 (24)

ψ2 = β(1 + b)− 1. (25)

Satisfaction of the weak E-stability condition requires that both eigenvalues be negative.
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Proposition 2 Determinate solutions of the Cagan model that are real are also E-stable.

Proof: Substitute the expression for b− into (24) to get ψ1 = −[1 + 4κφ/(1 + κ)2]1/2and do

the same for (25) to arrive at ψ2 = κ/(1 + κ) − 1
2
+ ψ1. Substitute ψ1into b− to arrive

at: b− = 1+κ
2κ
[1 + ψ1]. A necessary and sufficient condition for ψ1 < 0, ψ1 ∈ < is (P1):

φ > (1+ κ)2/(4κ) ≡ S. Proposition 1 imposes restrictions on φ as a function of κ to ensure

determinacy. For κ > −1, these are φ > −1 and φ < 1 + 2κ. Substituting these into the

expression for ψ1 gives ψ1 < −[(1 + 3κ)/(1 + κ)]2 which readily yields ψ1 < 0 and is real

whenever | b− |< 1 provided the solution is real. Simple substitution of ψ1into ψ2 shows that

ψ2 is also negative. For κ < −1, a similar proof applies. ¤

Having outlined the connection between b and β (or κ) for E-stability, let us now consider

unstructured perturbations to the ALM. Let Xt = [1 pt]
0. The reference ALM model is

then written as Xt = Π Xt−1, where

Π =

∙
1 0

α+ βa(1 + b) βb2 − γ

¸
is the model’s transition matrix. For simplicity, let us focus on b as the object of concern to

policy makers, and let the policy maker apply structured perturbations to Π, scaled by the

parameter, σb. The scaling parameter can be thought of as a standard deviation, but need

not be. Letting W1 = [ 0 σb ]0 and W2 =
£
0 1

¤
, write the perturbed matrix Π as:

Π∆ =

∙
1 0

α+ βa(1 + b) βb2 − γ +∆

¸
.

As in (14), the relevant matrices are defined in complex space. Accordingly, let z =

eiω, ω ∈ [−π, π]. To find the maximal allowable perturbation, write

G =

∙
z−1 − 1 0

−α− βa(1 + b) z−1 − βb2 + γ

¸
= I · z−1 −Π,

which, defining W1 = [ 0 σb ]0 and W2 =
£
0 1

¤
, is used to form G2:

G2 = W2G
−1W1

=
£
0 1

¤ " z
1−z 0

(α−βa(1+b))z
(1−z)(1−(βb2−γ)z)

z
1−(βb2−γ)z

#
[
0
σb
]

=
σbz

1− (βb2 − γ)z
.
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It is for this expression that we seek the smallest structured singular value, μ, as indicated

by (16).

In the multivariate case, the scaling parameter σb, can be parameterized as the standard

deviation of b relative to a, although other methods of parameterization can be entertained.

Doing so would reflect a concern for robustness of the decision maker and thus could also be

thought of as a taste parameter. Since it is a relative term, it will turn out to be irrelevant in

this scalar case, and so from here we set it to unity without loss of generality. The structured

norm of G2–equal to the absolute value of this last expression (see footnote 15)–is μ. It

is also easily established that the maximum of μ over the frequency range {−π, π}, let us

call it μ is μ = ||∆||∞ = |G2| arises at frequency π. Also, since at frequency π, z = −1, it

follows that |G2| = μ = 1
1+b
, or equivalently, the allowable perturbation is:

∆ =
1

μ
= 1 + b (26)

= 1 + βb2 − γ

= 1 +
1

2β
[1−

p
1 + 4βφ/(1 + κ)],

which depends inversely on the policy parameter, φ.21 Note also that while we have derived

this expression for∆ by applying perturbations to the ALM, we would have obtained exactly

the same result by working with the PLM.

If equation ∆ is the allowable perturbation, conditional on a given φ, then we can define

a φ∗ as the policy maker’s optimal choice of φ, where optimality is defined in the sense of

choosing the largest possible perturbation to b –call it ∆∗–such that the model will retain

the property of E-stability. Let us call this the maximum allowable perturbation. It is the

∆∗ and the associated φ∗ that is at a boundary where ∆ is just above −1:

φ∗ = 1 + 2κ− �, (27)

where φ < 1 + 2κ maintains stable convergence toward a REE and � is an arbitrarily small

positive constant necessary to keep b + ∆ off the unit circle. Note that this expression

for φ∗ indicates that the monetary authority will always respond more than one-for-one to

21 Note that at frequency π, 1−G2∆ = 1− σb
(1+b)

(1+b)
σb

= 0 as required by the definition of μ.
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deviations in lagged prices from steady state, with the extent of that over-response being a

positive function of the slope of the money demand function. Substituting these expressions

back into our perturbed transition matrix,

Π∗∆ =

∙
1 0

α− βa(1 + b) βb2 − γ +∆

¸
=

∙
1 0

α− βa(1 + b) 1 + 2(βb2 − γ)

¸
=

∙
1 0

α− βa(1 + b) −1 + η

¸
, (28)

where η is an arbitrarily small number, as determined by � in (27). The preceding confirms

that the authority’s policy is resilient to a perturbation in the learning model that pushes the

transition matrix is to the borderline of instability. In other words, setting a φ that allows

for the maximal stable misspecification of the learning model is one that permits convergence

to the REE.

Figure 2 shows the regions of dynamic stability and learnability for the Cagan model as

functions of the structural parameters: the absolute interest elasticity of money demand,

κ, and the monetary policy feedback parameter, φ. As noted in the legend to the right,

the determinate regions of the structural model are the blue areas, to the northeast and

southwest of the figure. Proposition 1 above, warns the monetary authority to stay out of

the indeterminate regions, the sliver of purple toward the southeast of the chart, that is

possible for some κ > 0 when φ < −1, and the larger region of purple to the west. Also to

be avoided are the orange regions of explosive solutions to the north and south.

The E-stable region is the large area between the two dashed lines. The first thing to

note is that E-stability does not imply determinacy: convergence in learning on indeterminate

equilibria in the area where both −1 < κ < −1/2 and −1 < φ < 0, is possible, corroborating

a point made by Evans and McGough [20] in a different context. In addition, learnability of

unstable equilibria is also possible as shown by the orange regions between the two dashed

lines. Indeed, even if one were to accept a priori that κ > 0, as Cagan assumed, there

are unstable equilibria that are learnable. At the same time, the figure clearly shows what

Proposition 2 noted: for this model, determinate models are always E-stable; the blue region

is entirely within the area bordered by the two dashed lines. It follows that in the special
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Figure 2: Regions of determinacy and E-stability in the Cagan model

case of the Cagan model, robustifying learnability is equivalent to maximizing the basin of

attraction for the rational expectations equilibrium of the model. The loci of robust policies,

φ∗, conditional of values of κ, is shown by the thick diagonal line running from the south

west to north east of the chart, and marked φ∗ = 1 + 2κ. The line shows that contrary to

what unguided intuition might suggest, the robust policy does not choose a rule that is in

the middle of the blue determinate and E-stable region, but rather chooses a policy that

might be quite close to the boundary of indeterminacy for the REE. Doing so increases the

region of E-stable ALMs—something that cannot be seen in the chart—and thereby enhances

the prospects for convergence on an REE.

3.2 The canonical New Keynesian model

We now turn to an analysis of the canonical New Keynesian business cycle model of Rotem-

berg andWoodford [39], Goodfriend and King [39] and others. Clarida, Gali, and Gertler [12]

used this model to derive optimal discretionary as well as optimal commitment rules. Their
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version includes a specified process for exogenous natural output. Evans and Honkapohja

[18] study this model to explore issues of determinacy and learnability for several optimal

commitment rules. Bullard and Mitra [9] likewise use the Woodford model to examine

determinacy and learnability of variants of the Taylor rule.

The behavior of the private sector is described by two equations. The aggregate demand

(IS) equation is a log-linearized Euler equation derived from optimal consumer behavior,

xt = E∗t xt+1 − σ[rt −E∗t πt+1 − rnt ], (29)

and the aggregate supply (AS) equation–indeed, the price setting rule for monopolistically

competitive firms is,

πt = κxt + βE∗t πt+1, (30)

where x is the log deviation of output from potential output, π is inflation, r is a short-

term interest rate controlled by the central bank, and rn is the natural interest rate. For

the application of Bullard and Mitra’s [8] (BM) example, we assume that rnt is driven by a

first-order autoregressive process,

rnt = ρrr
n
t−1 + �r,t, (31)

0 ≤ |ρr| < 1, and �r,t ∼ iid(0, σ2r). This is essentially Woodford’s [48] version of this model,

which specifies that aggregate demand responds to the deviation of the real rate, rt−Etπt+1

from the natural rate, rnt .

We need to close the model with an interest-rate feedback rule. We study three types of

policy rules. In the first set of experiments described in Section 3.3, a central bank chooses

an interest rate setting in each period as a reaction to observed events, such as inflation and

the output gap, without explicitly attempting to improve some measure of welfare. Instead,

the policy authority is mindful of the effect its policy has on the prospect of the economy

reaching REE and designs its rule accordingly. Bullard and Mitra [8] study such rules for

their properties in promoting learnable equilibria and consider that effort as prior to one of

finding optimal policy rules consistent with REE. We take this analysis further by seeking

to find policy rules that maximize learnability of agents’ models when policy influences the

outcome.
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The information protocol in these experiments is as follows. The central bank knows

the structural model and has access to the data. Economic agents see the data, which

change over time, and formulate the perceived law of motion. Agents form expectations

based on recursive (least-squares) estimation of a reduced form. The data are regenerated

each period, subject to the authority having implemented its policy and agents’ having made

investment and consumption decisions based on their newly formed expectations.

We assume that agents mistakenly specify a vector-autoregressive model in the endoge-

nous and exogenous variables of the model. That means we assume the learning model to

be overparameterized in comparison with the model implied by the MSV solution. The

scaling factors used in W1 to scale the perturbations to the PLM are the standard errors of

the coefficients obtained from an initial run of a recursive least squares regression of such

a VAR with data being updated by the true model, given an arbitrary but determinate

parameterization of the policy rule being studied. As noted earlier, an alternative approach

would be to revise the scalings with each trial policy, given that the VAR would likely change

with each parameterization of policy. We leave this for a revision.

3.3 Simple interest-rate feedback rules

This section describes two versions of the Taylor rule analyzed by Bullard and Mitra [8].

The complete system comprises equations (29)-(32), and the exogenous variable, rnt . The

policy instrument is the nominal interest rate, rt. The first policy rule specifies that the

interest rate responds to lagged inflation and the lagged output gap. In their paper, BM

study the role of interest-rate inertia and so include a lagged interest rate term.

rt = φππt−1 + φxxt−1 + φrrt−1 (32)

McCallum has advocated such a lagged data rule because of its implementability, given that

contemporaneous data are generally not available in real time to policy makers.

Some research suggests that forward-looking rules perform well in theory (see, e.g., Evans

and Honkapohja [18]) as well as in actual economies, such as Germany, Japan, and the US

(see Clarida, Gali, and Gertler [11]). Accordingly, BM propose the rule

rt = φπE
∗
t πt+1 + φxE

∗
t xt+1 + φrrt−1. (33)
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The expectations operator E∗ has an asterisk to indicate that expectations need not be

rational.

Finally, the most popular rules of this class are contemporaneous data rules, of which

the following is our choice:

rt = φππt + φxxt + φrrt−1 (34)

where as before, we allow the lagged federal funds rate to appear to capture instrument-

smoothing behavior by uncertainty averse decision makers.

3.4 Results

We adopt BM’s calibration for the New Keynesian model’s parameters, σ = 1/.157, κ = .024,

β = .99, and ρ = .35, the same calibration as in Woodford [49]. We also set σr = 0.01. For

reference purposes, it is useful to compare our results against those of rules that are not

parameterized with robust learnability in mind. To facilitate this, we employ a standard

quadratic loss function:

Lt =
1000

2

∞X
j=0

βj[(πt+j − π∗)2 + λxx
2
t+j + λr(rt+j − r∗)2]. (35)

Walsh [47] shows that with the values λx = .077 and λi = .027, equation (35) is the quadratic

approximation to the social welfare function of the model. Rules that are computed to

maximize the prospect of convergence to REE under the greatest possible misspecification

of the ALM model in the manner described above will be referred to as "robust" or "robust

learnable" rules. A credible benchmark against which to compare these robust rules, are

what we shall refer to as optimized rules. These are rules that minimize (35) subject to (29),

(30), (31) and one of either (32), (34) or (33). Such rules can be optimized using a standard

hill-climbing algorithm using methods well described in the appendix to Tetlow and von zur

Muehlen [44] among other sources.

Let us consider the lagged-data rule first. BM find that the determinacy of a unique ra-

tional expectations equilibrium, as well as convergence toward that equilibrium when agents

learn adaptively, is extremely sensitive to the policy parameters, φr, φx, and φπ. Without

some degree of monetary policy inertia, (φr > 0), this model is determinate and learnable,
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with the above calibrations, only if the Taylor principle holds, (φπ > 1), and the response to

the output gap is modest, (φx ≤ 0.5). Insufficient or excessive responsiveness to either infla-

tion or the output gap can in some instances lead to explosive instability or indeterminacy.

Through simulation, BM establish the regions for the parameters that lead to determinacy

as well as E-stability.

Table 1 shows our results. The table is broken into three panels. The upper panel—the

rows marked (1) to (3)—shows optimized rules. The second panel, contains some results for

the generic Taylor rule. Finally, the third panel shows our robust learnable rules. The

next-to-last column of the table gives a measure of the total uncertainty that the PLM can

tolerate under the cited policy. It is a measure of the maximal allowable deviation embodied

in 1/μ. 22 The last column shows the loss as measured by (35).
Table 1 : Standard and robust learnable rules

row φx φπ φr radius1 L2

optimized rules:
lagged data rule (1) 0.052 0.993 1.13 1.07 3.679
contemporaneous data rule (2) 0.053 0.995 1.12 1.06 3.626
forecast-based rule (3) 0.286 0.999 1.32 0.88 3.628

standard rules:
Taylor rule (4) 0.500 1.500 0 0.85 5.690

robust learnable rules:
lagged data rule (5) 0.065 0.40 1.10 1.16 3.712
contemporaneous data rule (6) 0.052 1.21 1.41 1.13 3.701
forecast-based rule (7) 0.040 2.80 0.10 2.32 4.434
1.Magnitude of the largest allowable perturbation. r =kW1∆W2 k∞
2. Asymptotic loss, calculated according to eq. (35) in REE under the reference model.

Let us concentrate initially on our optimized rules along with the Taylor rule to provide

some context for the robust learnable rules. The lagged data rule, shown in row (1), and

the contemporaneous data rule, (2), are essentially the same. They both feature very

small feedback on the output gap, and strong responses to inflation. Moreover, they also

feature funds rate persistence that amounts to a first-difference rule; that is, a rule where

the dependent variable is ∆r rather than r. The forecast-based rule, in line (3), has much

stronger feedback on the output gap, although proper interpretation of this requires noting

that in equilibrium the expectation of future output gaps will always be smaller than actual

22 For comparison of the trials with each other and also to give a sense of natural units related to the
scalings we employed, the radius is calculated as the H∞ norm of the scaled perturbations to the PLM
model: radius = ||W1∆W2||∞.
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gaps because of the absence of expected future shocks and the internalization of future policy

in the formulation of that expectation. Thus, the response of the funds rate to the expected

future gap will not be as large as the feedback coefficient alone might lead one to believe.

These three rules confirm the received wisdom of monetary control in New Keynesian

models, to wit: strong feedback on inflation, comparatively little on output, and strong

persistence in funds rate setting. These rules are chosen to minimize the loss shown in the

right-hand column of the table; the losses for all three are very similar, at a little over 3.6.

The results for the Taylor rule demonstrate, indirectly, the oft-discussed advantages of

persistence in funds rate setting for monetary control. Without such persistence, the Taylor

rule produces losses that are substantially higher than those of the optimized rules.

Now let us turn to the robust learnable rules in the bottom panel of the table, concentrat-

ing for the moment on the lagged data and contemporaneous data rules shown in lines (5)

and (6). The first thing to note is that the results confirm the efficacy of persistence in in-

strument setting. The robust learnable rules are at least as persistent—if persistence greater

than unity is a meaningful concept—as the optimized rules. At the same time, while per-

sistence is evidently useful for learnability, our results do not point to the hyper-persistence

result, (φr À 1), that BM hint at. To understand this outcome, it is important to realize

that while our results are related to the BM results, there are conceptual differences. BM

describe the range of policy-rule coefficients for which the model is learnable, taking as given

the model. We are describing the range of policy coefficients that maximizes the range of

models that are still learnable. So while large values for φr are beneficial to learnability

holding constant the model and its associated ALM, at some point, they come at a cost in

terms of the perturbations that can be withstood in other dimensions.

Now let us look at the costs and benefits of these two rules in comparison with their

optimized counterparts. We measure the benefits by comparing the radii of robustness

from the column second from the right, for various rules. For the optimized, outcome-

based rules, shown in the first two rows of the table, the radii are about 1.06 or so, while

those of their robustified couterparts range from 1.13 to 1.16. Thus the improvement in

robustness of learnability would appear to be moderate. Costs are inferred by comparing

the losses shown in the right-hand column of the table. The results show that the cost of
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maximizing learnability measured in terms of foregone performance in the REE is very small.

Evidently, learnability can be robustified, to some degree, without much of any concomitant

loss in economic performance, at least in the canonical NKB model.

Before moving on to forecast-based rules, let us consider the classic Taylor rule shown in

the fourth row. Recall that the Taylor rule has been advocated as a policy that is at least

reasonably robust across a fairly wide range of models. Here, however, the radius associated

with the Taylor rule is shown to be quite small at 0.85. At the same time, the performance

of the rule in terms of loss is relatively weak. Thus, to the extent that we can take claims of

the robustness of the Taylor rule with its original parameterization as applying to the issue

of learnability, the rule would appear to come up a bit short.

Now let us examine the results for the forecast-based policy shown in the seventh row.

Here the prescribed robust learnable policy is much different from the optimized rule shown

in line (3). The robust rule essentially removes the policy persistence that the optimized

policy calls for. The policy performance in the rational expectations equilibrium of the

forecast-based robustly learnable rule is somewhat worse than its optimized counterpart,

but notice that the radius of learnability is nearly triple that of the optimized rule.

While the superiority in terms of robustness of an (almost) non-intertial forecast-based

rule is superficially at odds with Bullard and Mitra, the result really should not be all

that surprising. Forecast-based rules leverage heavily the rational expectations aspects of

the model—even more so than the contemporaneous and lagged data rules since there are

rational expectations in the model itself and in the policy rule—and there is risk in leverage.

The learnability of the economy is highly susceptible to misspecification in this area. This

is, of course, just a manifestation of the problem that Bernanke and Woodford [2] and others

have warned about.

We can obtain a deeper understanding of the effects of a concern for robust learnability

on policy design by examining the properties of different calibrations of policy rules for their

effects on the allowable perturbations. The magnitude of perturbations that a given model

can tolerate, conditional on a policy rule, is given by the radius. The radii for the rules

shown in Table 1 are in the column second from the right. We can, however, provide a

visualization of radii mapped against policy-rule coefficients and judge how policy affects
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Figure 3 provides one such visualization: contour maps of radii against the output-gap

feedback coefficient, φx, and inflation feedback coefficient, φπ, in this case for the contempo-

raneous data rule. The third dimension of policy, the feedback on the lagged fed funds rate,

φr, is being held constant in these charts, at zero in the upper panel and at unity in the lower.

The colors of the chart index the radii of allowable perturbations for each rule, with the bar

at the right-hand side showing the tolerance for misspecification. The area in deep blue, for

example, represents policies with no tolerance for misspecification of the model or learning

whatsoever, either because the rule fails to deliver E-stability in the first place, or because

it is very fragile. The sizable region of deep blue in the upper panel shows the area that

violates the Taylor principle. The right of the deep blue region–where φπ > 1–we enter

regions of green, where there is modest tolerance for misspecification that allows learnability.

In general, with no interest-rate smoothing, there is little scope for misspecification.

Now let us look at the case where φr = 1 in the bottom panel. Now the region of

deep blue is relegated to the very south-west of the chart, as is the region of green. To the

north-east of those are expansive areas of higher tolerance for misspecification. Evidently,

at least some measure of persistence in policy is useful for robustifying learnability. Notice

how there is a deep burgundy sliver of fairly strong robustness in the north-east part of the

panel.

Figure 4 continues the analysis for the contemporaneous data rule by showing contour

charts for two more levels of φr. The upper panel shows the value for the rule that allows

the maximum allowable perturbation as shown in line (6) of the table. With φr = 1.41 the

burgundy region of highest robustness is at its largest and the policy rule shown in line (6) of

the table is within that region. More generally, the area of significant robustness–the redder

regions–are collectively quite large. Finally, we go to the bottom panel of the figure which

shows the results for a relatively high level of φr. What has happened is that the regions

shown in the top panel have rotated down and to the right as φr has risen. The burgundy

region is now gone, and the red regions command much less space. Thus, while policy

persistence is good for learnability, in terms of robustness of that result to misspecification,

one can go too far.

35
ECB

Working Paper Series No. 593
February 2006



0.5 1 1.5 2 2.5

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5 1 1.5 2 2.5

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ö
x

Ö
x

Ö
ð

Ö
ð

Ö
r
=1.00

Ö
r
=0.00

Ä

Ä

Figure 3: Contours of radii for the NKB model, contemporaneous data rule, selected φr
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Figure 4: Contours of radii for the NKB model, contemporaneous data rules, selected φr
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Figures 3 and 4 cover the case of the contemporaneous data rule. We turn now to

forecast-based rules. The results here look quite different, but the underlying message is

very much the same. As before, Figure 5 shows the results for low levels of persistence

in policy setting. The upper panel shows the static forecast-based rule. The deep blue

areas to the left of φπ = 1 are areas of indeterminacy, as they were in Figure 3. There

are, however, numerous blue "potholes" elsewhere in the panel. These are areas where

the learnable equilibrium is feasible, but fragile.23 Notice, however, that these blue regions

border very closely to burgundy regions where the allowable perturbations exceed 2; that

is, the allowable perturbations are very large. The bottom panel shows contours covering

the policy persistence level that is optimal, as shown in line (7) of table 1. There are fewer

potholes. The optimally robust policy is toward the top of this chart.

Finally, let us examine Figure 6. The top panel shows that a small increase in φr from

0.10 to 0.12, reduces the number of potholes to nearly zero. The radii shown in the rest of

the chart remain high, but the optimal policy is not in this region.24

The bottom panel of the chart shows the contours for a modest and conventional value

of funds rate persistence, φr = 0.50. The potholes have now completely disappeared, but

the large red region is less robust than the burgundy regions in the previous charts. Not

shown in these charts are still higher levels of persistence. These involve still lower levels of

robustness, with radii for φr > 1 associated with radii that are less than half the magnitude

of the maximum allowable perturbation for this rule. Higher levels of persistence in policy

setting are deleterious for robustification of model learnability in inflation-forecast based

policy rules.25

Of course these particular results are contingent on the relative weightings for pertur-

23 Since degree of robustness is a function of the model’s eigenvalues and those are non-linear functions
of the parameters of the model and of the learning mechanism, it is not possible to identify the source of
these potholes. That said, it isn’t necessary either. The idea behind the methods described in this paper is
to avoid the pitfalls of nonparametric errors.
24 The presence of the "potholes" in the chart for φr = 0.10, wherein the optimally robust rule is found,

and their near-absence for the chart φr = 0.12 points to another concept of robustness. We assume the
monetary authority knows the structural model. As a result, the economy cannot accidentally fall into one
of the potholes shown in the figure. A worthwhile extension would be to allow the authority to have doubts
about the structural parameters of the model, in addition to the learning mechanism. However the current
paper is—the first in this area—is already ambitious enough and so we leave the issue for future research.
25 We tested φr up to nearly 20. What we found is that the radii fell as φr rose for intermediate levels,

and then rose slowly again for φr À 1. However, for no level of φr could we find radii that came anywhere
close to the maximum allowable perturbation shown in row (7) of the table.
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Figure 5: Contours of radii for the NKB model, forecast based rule, selected φr
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Figure 6: Contours of radii for hte NKB model, forecast-based rule, selected φr
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bations, captured in W1, and our selection is just one of many that could have been made.

For the numerical experiments, the weightings were set equal to the standard deviations of

the coefficients of a first-order VAR for the output gap, inflation, the interest rate, and the

natural rate, estimated at the beginning of each experiment using recursive least squares.

This approximates the private sector’s problem, and should give a rough idea of the relative

uncertainties associated with the coefficients of the PLM. Whether using estimated stan-

dard deviations to scale the relative impact of Knightian model uncertainty on the learning

mechanism is proper or desirable can be debated, of course. For now the salient point is

that robustness of learning in the presence of model uncertainty is not the same thing as

choosing the rule parameters for which the E-stable region of a given model is largest.

4 Concluding remarks

We have argued that model uncertainty is a serious issue in the design of monetary policy.

On this score we are in good company. Many authors have advanced that minimizing a

loss function subject to a given model presumed to be known with certainty is no longer

best practice for monetary authorities. Central bankers must also take model uncertainty

and learning into account. Where this paper differs from its predecessors is that we unify

uncertainty about the learning mechanism used by private agents with the steps the monetary

authority can take to address the problem. In particular, we examine a central bank

that designs monetary policy to maximize the possible worlds in which ill-informed private

agents need to learn about their particular world and still allow convergence on the rational

expectations equilibrium.

The motivation for this approach is straightforward: if economics as a profession cannot

agree on what the true model of the economy is, it is a leap of faith to expect private

agents to agree, coordinate, and find the REE by themselves. Policy makers can play a

role in facilitating (or frustrating) the process of learning the REE through the design of

policy. This paper begins from the premise that best practice for a monetary authority

using simple instrument rules is to parameterize the rule that provides good performance

not just in the steady state–that is, when convergence to REE has been achieved–but also
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in out-of-equilibrium behavior of the system. We further argue that foremost among the

considerations of what constitutes good out-of-equilibrium behavior of an uncertain system

under learning should be the prospects for converging on an REE.

In pursuit of this goal, this paper has married the literature on adaptive learning to that

of structured robust control to examine what policy makers can do to facilitate learning. We

have introduced some tools with which the questions that Bullard and Mitra [8] are asking

can be broadened and generalized.

More narrowly we have also found that the warnings of Bernanke and Woodford [2] are

well placed; inflation-forecast-based monetary policy rules do present dangers. We have also

shown that the conclusion that Bullard and Mitra [8] point to is not as general as one might

initially suppose.

Looking ahead, we see new research directions that broaden the scope of robustness by

addressing a wider range of uncertainties against which a policy maker may wish to protect.

Evans and McGough [21], for example, show how to compute Taylor-type rules that will

converge on an REE in a variety of models, taking the learning mechanism as given, whereas

we take the structural model as given and investigate the implications of misspecification of

learning rules. A fusion of the two approaches would seem to be worth investigating.
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