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Abstract

We examine the linear-quadratic (LQ) approximation of non-linear stochastic dy-

namic optimization problems in macroeconomics, in particular for monetary policy.

We make four main contributions: first, we draw attention to a general Hamiltonian

framework for LQ approximation due to Magill (1977). We show that the procedure for

the ‘large distortions’ case of Benigno and Woodford (2003, 2005) is equivalent to the

Hamiltonian approach, but the latter is far easier to implement. Second, we apply the

Hamiltonian approach to a Dynamic Stochastic General Equilibrium model with exter-

nal habit in consumption. Third, we introduce the concept of target-implementability

which fits in with the general notion of targeting rules proposed by Svensson (2003,

2005). We derive sufficient conditions for the LQ approximation to have this property

in the vicinity of a zero-inflation steady state. Finally, we extend the Hamiltonian

approach to a non-cooperative equilibrium in a two-country model.

JEL Classification: E52, E37, E58

Keywords: Linear-quadratic approximation, dynamic stochastic general equilibrium

models, utility-based loss function.

4
ECB 
Working Paper Series No 759 
June 2007



Non-Technical Summary

This paper is about macroeconomic optimization problems in general with a particular

application to welfare-optimal monetary policy. The title may sound like a smorgasbord

of disparate topics, but in fact, as we will demonstrate, the correct linear-quadratic (LQ)

approximation of a non-linear optimization problem, external habit in New Keynesian

models and the idea of general targeting monetary rules in the literature by are all closely

related.

LQ approximations to non-linear dynamic optimization problems in macroeconomics

are widely used for a number of reasons. First, for LQ problems the characterization of

time consistent and commitment equilibria for a single policy maker, and even more so for

many interacting policymakers, are well-understood, and inexpensive to compute. Indeed

the ‘curse of dimensionality’ will ensure the usefulness of LQ approximations to many of

these problem, even for the case of a single policy-maker. Second, the ‘certainty equiva-

lence’ property results in optimal rules that robust in the sense that they are independent

of the properties of the additive disturbances. Third, policy can be decomposed into an

average (deterministic) and a stochastic, stabilization component that prescribes how the

instrument should respond to unanticipated shocks. This is a very convenient property

since it enables the stabilization component to be pursued using simple Taylor-type feed-

back rules rather than the exceedingly complex optimal counterpart. Fourth, the stability

of the system is conveniently summarized in terms of the eigenvalues of the system with

the policy rule in place. Finally for sufficiently simple models, LQ approximation allows

analytical rather than numerical solution.

But what is the correct procedure for replacing a stochastic, non-linear optimization

problem with a LQ approximation? We make four main contributions to the optimal

macroeconomic policy literature. First, we draw attention to a general Hamiltonian frame-

work for approximating a non-linear problem by an LQ one due to Magill (1977), who

appears to be the first to have applied it in the economics literature. We use a simple

example to show that the procedure for the ‘large distortions’ case of Benigno and Wood-

ford (2003, 2005) is equivalent to the Hamiltonian approach, but the latter is far easier to

implement. Second, we apply the Hamiltonian approach to a fairly standard New Keyne-

sian model with external habit in consumption. We show that in such a model the natural

rate of output can exceed the efficient rate if habit is sufficiently strong and this feature

has important implications for the form of the LQ approximation. Third, we introduce

the concept of ‘target-implementability’ which requires the quadratic approximation of

the welfare to be expressed in terms of targets or ‘bliss points’ for linear combinations

of macroeconomic variables. Such a property fits in with the notion of targeting rules

proposed in the literature. We then derive sufficient conditions for the LQ approximation

to have this property in the vicinity of a zero-inflation steady state. Finally we extend the

Hamiltonian approach to a non-cooperative equilibrium in a two-country model.
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The Hamiltonian method provides an accurate LQ approximation of the household’s

utility function given a linearized model economy in the vicinity of the Ramsey commitment

problem for the policymaker. For the case of non-cooperative games, the latter is the

Ramsey problem for each policy-maker given the trajectory of instruments of the other

players. The question then is, given the choice of welfare which differs for cooperative and

non-cooperative games, is this LQ approximation appropriate for other types of policy (for

example for optimized simple rules, time-consistent policy or for other non-cooperative

equilibrium concepts)? Because the Ramsey commitment problem is, ex ante, the best

the policymaker can achieve this is indeed the case. Thus LQ approximation provides a

tractable framework for comparing both cooperative and non-cooperative rules with and

without commitment, and different forms of non-cooperative equilibria using the same

LQ approximation of the problem facing each policymaker. Future research involving the

authors will pursue precisely this agenda.
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1 Introduction

This paper is about macroeconomic optimization problems in general with a particular

application to welfare-optimal monetary policy. The title may sound like a smorgasbord

of disparate topics, but in fact, as we will demonstrate, the correct linear-quadratic (LQ)

approximation of a non-linear optimization problem, external habit in DSGE models and

the idea of general targeting monetary rules as proposed by Svensson(2003, 2005) are all

related.

LQ approximations to non-linear dynamic optimization problems in macroeconomics

are widely used for a number of reasons. First, for LQ problems the characterization of

time consistent and commitment equilibria for a single policy maker, and even more so

for many interacting policymakers, are well-understood. Second, the certainty equiva-

lence property results in optimal rules that robust in the sense that they are independent

of the variance-covariance matrix of additive disturbances. Third, policy can be decom-

posed into deterministic and stochastic components. This is a very convenient property

since it enables the stochastic stabilization component to be pursued using simple Taylor-

type feedback rules rather than the exceedingly complex optimal counterpart. Fourth,

the stability of the system is conveniently summarized in terms of eigenvalues. Finally

for sufficiently simple models, LQ approximation allows analytical rather than numerical

solution.

But what is the correct procedure for replacing a stochastic non-linear optimization

problem with a LQ approximation? Until quite recently some common methods employed

by economists have produced poor approximations which open up the possibility of spu-

rious results. These pitfalls are very neatly exposed in Kim and Kim (2003) and Kim and

Kim (2006).

We make four main contributions to the optimal macroeconomic policy literature.

First, we draw attention to a general Hamiltonian framework for approximating a non-

linear problem by an LQ one due to Magill (1977), who appears to be the first to have

applied it in the economics literature. We use a simple example to show that the proce-

dure for the ‘large distortions’ case of Benigno and Woodford (2003, 2005) is equivalent

to the Hamiltonian approach, but the latter is far easier to implement.1 Second, we ap-

ply the Hamiltonian approach to a fairly standard New Keynesian DSGE model with

external habit in consumption. We show that in such a model the natural rate of output

can exceed the efficient rate if habit is sufficiently strong and this feature has important

implications for the form of the LQ approximation. Third, we introduce the concept of

1Benigno and Woodford (2006), citing an earlier version of our paper, also draw attention to this

approach.
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target-implementability which requires the quadratic approximation of the welfare to be

expressed in terms of targets or ‘bliss points’ for linear combinations of macroeconomic

variables. Such a property fits in with the notion of targeting rules proposed by Svensson

(2003, 2005). We then derive sufficient conditions for the LQ approximation to have this

property in the vicinity of a zero-inflation steady state. Finally we extend the Hamilto-

nian approach to a non-cooperative equilibrium in a two-country model. In the simple

model of Clarida et al. (2002) without habit in consumption, we show that the commonly

used procedures for LQ approximation assuming either an efficient zero-inflation steady

state (achieved by a subsidy) or ‘small distortions’ are inappropriate unless the instru-

ment in the Nash equilibrium is assumed to be output. If, perhaps more plausibly, the

instrument is taken to be inflation (or inflation targets perfectly achieved) then the Hamil-

tonian approach, which we extend to the two-country non-cooperative equilibrium, must

be employed.

The rest of the paper is organized as follows. Section 2 summarizes the results of a

discrete-time version of the continuous-time results of and Magill (1977). We provide a

simple example of this, using a simple New Keynesian model and ad hoc policymaker’s

utility function as set out in Clarida et al. (1999) and demonstrate that for this simple

example the BW and Hamiltonian procedures are equivalent.

In Section 3 we introduce the general class of DSGE models to be studied. We examine

the social planner’s problem where optimization is only subject to resource constraints. We

then proceed to the Ramsey problem where, in addition, the policy-maker faces constraints

in the form of decentralized decisions by households and firms, given the instrument at

her disposal. The LQ approximation to the Ramsey problem is analyzed for the ‘efficient

case’ (where subsidies eliminate distortions in the steady state) and the ‘small distortions

case’ where such subsidies are not available.

Section 4 applies the general results of preceding sections to welfare-maximizing mon-

etary policy in a fairly standard New Keynesian framework, with external habit in con-

sumption. We derive the corresponding LQ approximation to the policymaker’s problem,

and briefly comment on its representation when there is no habit. In addition we compare

the quadratic expansions in the efficient case and the large distortions case.

Section 5 defines and discusses the notion of target-implementability ; this is essentially

about the conduction of monetary policy by the setting of targets in the loss function

by the monetary authority, as advocated by Svensson, when it engages in stabilization

policy. We then obtain sufficient conditions for the target implementability of the LQ

approximation to the Ramsey problem in the vicinity of a zero-inflation steady state.

Finally, to demonstrate that second-order conditions for a maximum do matter, we provide
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an example for which the necessary and sufficient second-order conditions for optimality

are not satisfied although the zero-inflation steady state satisfies the necessary first-order

conditions.

In Section 6, we extend our work to the two bloc case. We demonstrate the inadequacy

of the ‘small distortions’ approach, and derive an appropriate LQ approximation for the

‘large distortions’ case, which we compare with Benigno and Benigno (2006). Section 7

provides some concluding remarks.

2 The LQ Approximation to a General Dynamic Optimiza-

tion Problem

In this section we provide the mathematical background to LQ approximations that pro-

vide accurate first-order approximations to deviations from the optimal solution to a

deterministic dynamic optimization (or optimal control) problem. We firstly state the

requirements for an LQ approximation to be accurate to first order, and then explain

how it may be obtained using the Lagrangian of the problem. We apply this to a very

simple economic model with a rudimentary output/inflation tradeoff. The reason for so

doing is to demonstrate that the method of Benigno and Woodford (2003, 2005) as used

in this model is equivalent to implementing a Lagrangian (or more strictly a Hamiltonian)

approach to the objective function.

2.1 Necessary and Sufficient Conditions for an Accurate LQ Approxi-

mation:

Suppose we have a deterministic dynamic optimization problem expressed in the form2

max
∞

∑

t=0

βtU(Xt−1,Wt) s.t. Xt = f(Xt−1,Wt) (1)

given initial and possibly tranversality conditions, which has a steady state solution X̄, W̄

for the states Xt and the policies Wt. Define xt = Xt−X̄ and wt = Wt−W̄ as representing

2An alternative representation of the problem is U(Xt, Wt) and Et[Xt+1] = f(Xt, Wt) where Xt includes

forward-looking non-predetermined variables and Et[Xt+1] = Xt+1 for the deterministic problem where

perfect foresight applies. Whichever one uses, it is easy to switch from one to the other by a simple re-

definition. Magill (1977) adopted a continuous-time model without forward-looking variables. We present

a discrete-time version with forward-looking variables. As we demonstrate in the paper, although the

inclusion of forward-looking variables significantly alters the nature of the optimization problem, these

changes only affect the boundary conditions and not the steady state of the optimum which is all we

require for LQ approximation.
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the first-order approximation to deviations of states and policies from their steady states.

Suppose we write a candidate first-order approximation to the problem as

max
∞

∑

t=0

βt

(

[

xT
t−1 wT

t

]

Q

[

xt−1

wt

]

− 2
[

xT
t−1 wT

t

]

b

)

s.t. xt = Axt−1 + Bwt + c

(2)

Then a necessary condition for this to be a first-order accurate solution is that b = 0, c = 0

i.e. the objective function must be purely quadratic and the dynamics purely linear in

deviations. The reasons for this are clear; firstly, suppose that the system starts in the

steady state; it could only remain in the steady state xt = 0, wt = 0 if c = 0. Secondly, if

b 6= 0 then there is a bliss-point Q−1b 6= 0 which would be desirable, so that the solution

to the problem starting at the steady state would not remain at the steady state.

The implications of these conditions are rather serious given the manner in which many

LQ approximations were conducted within the economics profession up until a few years

ago. Often, the approach used would often not even involve finding the steady state of the

optimal solution to the problem. Even were that the case, the next error to be committed

would be to use merely a Taylor series approximation to the objective function f(X, W ),

whose first-order expansion cannot of course be guaranteed to equal zero.

However there exists a very straightforward approach to finding the appropriate ap-

proximation. Define the problem using a Lagrangian L

L =

∞
∑

t=0

βt[U(Xt−1,Wt) − λT
t (Xt − f(Xt−1,Wt))] (3)

so that a necessary condition for the solution to (1) is that the Lagrangian is stationary

at all {Xs}, {Ws} i.e.

UW + λT
t fW = 0 UX −

1

β
λT

t−1 + λT
t fX = 0 (4)

These necessary conditions for an optimum do not imply that the there is an asymp-

totic steady state to (4). However for the purposes of this paper, let us assume that this

is the case, so that a steady state λ̄ for the Lagrange multipliers exists as well. Now define

the Hamiltonian Ht = U(Xt−1,Wt) + λ̄T f(Xt−1,Wt). The following is the discrete time

version of Magill (1977):

Theorem 1: If a steady state solution (X̄, W̄ , λ̄) to the optimization problem (1) exists,

then any perturbation (xt, wt) about this steady state can be expressed as the solution to

max
1

2

∞
∑

t=0

βt
[

xt−1 wt

]

[

HXX HXW

HWX HWW

][

xt−1

wt

]

s.t. xt = fXxt−1 + fW wt (5)
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The reason why this result holds is because the derivatives of the Lagrangian with re-

spect to Xt and Wt are zero when evaluated at (X̄, W̄ , λ̄). By definition,
∑

∞

t=0 βtU(Xt−1,Wt)

=
∑

∞

t=0 βt[U(Xt−1,Wt) − λ̄T (Xt − f(Xt−1,Wt))], and the first-order term of the Taylor

series expansion of the latter expression is zero.

For the result of theorem to hold (X̄, W̄ , λ̄) must satisfy (4). These, it should be

stressed, are necessary but not sufficient conditions for a local maximum. A standard suf-

ficient condition for optimality is that the functions f(X,W ) and U(X,W ) are concave,

but this is rarely satisfied in examples from economics. A more useful sufficient condition

is the following:

Theorem 2: A sufficient condition for for the steady state of (4) to be a local maxi-

mum is that the matrix of second derivatives of H in (5) is negative semi-definite4.

This condition is easy to check, but in the event that it does not hold, the following

discrete time version of the sufficient conditions for an optimum Magill (1977) is applicable

when the constraints and/or the welfare function are non-concave. It is based on iterating

the quadratic approximation to the value function.

Theorem 3:

(a) A necessary and sufficient condition for the solution (4) to the dynamic optimization

problem (1) to be a local maximum is that βfT
W PtfW + HWW is negative definite for all

t, where the matrices fX , fW ,HXX ,HXW ,HWW are all evaluated along the solution path

and Pt satisfies the backwards Riccati equation given by:

Pt−1 = βfT
XPtfX − (βfT

XPtfW + HXW )(βfT
W PtfW + HWW )−1(βfT

W PtfX + HWX) + HXX

(6)

3Benigno and Woodford (2006), in their quadratification of the Lagrangian, emphasise the ’timeless

perspective’ which imposes initial conditions on the ex ante optimal rule that ensures a consistency (though

not Kydland-Prescott ’time consistency’) in the form of commitment. This policy is then used as a

benchmark in the relative evaluation of other policy rules. However, it is easy to see that there is no

essential difference between (5), or more precisely (8) below, and their (2.21); this is because under the

timeless perspective the deviations are evaluated, as is the case here, about the steady state of the optimum.

The only difference arises from their presentation of the dynamic constraints; we have re-arranged the latter

so that the most forward-dated variables appear on the LHS of the constraint.
4A simple example of a problem for which a maximum exists, but for which this sufficient condition

does not hold is: max x2−y2 such that y = ax+b. It is easy to see that the stationary point is a maximum

when |a| > 1.
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and the value function of small perturbations xt about the path of the optimal solution

dynamic optimization problem is given by 1
2xT

t Ptxt.

(b) Consider a rational expectations system, where we order Xt as predetermined

followed by non-predetermined variables, so that the latter dynamic constraints involve

forward-looking expectations. Suppose that there is a long-run steady state solution to

the first-order conditions. Then a further necessary and sufficient condition for this to

be a maximum is that the bottom right-hand corner P22 of the the steady-state Riccati

matrix P is negative definite. 5

Proof: The basic idea is that the the optimal policy depends on the initial condition and

the instruments and, in the case of an RE system, the jumps in the non-predetermined

variables. Given the latter, one can take a dynamic programming approach to the problem

to prove (a): taking variations about the optimal path, one may write the value function

Vt at time t as a constant plus 1
2xT

t Ptxt. Using (5), one can write the value function Vt−1

(ignoring constants) as

Vt−1 =
1

2
max

{

β(fXxt−1+fW wt)
T Pt(fXxt−1+fW wt)+

[

xt−1 wt

]

[

HXX HXW

HWX HWW

] [

xt−1

wt

]

}

(7)

with respect to wt. The stated conditions for a maximum, and the update of Pt are

straightforward to derive from this.

To prove (b), recall that from Currie and Levine (1993), we have the result under

RE that V0 is given by 1
2(xpT

0 (P11 − P12P
−1
22 P21)x

p
0 + pT

0 P−1
22 p0) where xp

t are the devia-

tions in the predetermined variables, p0 is the initial value of the Lagrange multipliers

5This turns out to be almost the same result as in Benigno and Woodford (2006); their Lemma 2(i) is a

frequency domain requirement which in our case corresponds to the negative definiteness of the steady state

of P. However this result is only true for certain special cases, see Trentelman and Rapisarda (2001), which

discusses the continuous time Riccati equation, but briefly refers to the discrete time version as well; the

result is not necessarily valid when, for example, quadratic costs on the policy variables are neither negative

nor positive definite. Their Lemma 2(ii) when rephrased in terms of our setup relates directly to the

representation of the welfare in terms of (a) deviations in the backward-looking variable, plus (b) deviations

in the Lagrange multiplier corresponding to the forward-looking variable, and in addition (c) a quadratic

term in the instrument, where the latter depends on the negative definiteness of βfT
W PfW + HWW . The

quadratic weighting on (a) is P11 − P12P
−1
22 P21, and on (b) is P−1

22 , where these are defined in the proof

of the theorem. These are each required by their Lemma 2(ii) to be negative definite, and it is easy to

show that this is equivalent to P being negative definite. Thus their Lemma 2(i) is redundant. However

the requirement on the backward-looking variables is not a necessary condition for optimality, so there is

a further redundancy. Their interpretation of of non-negative definiteness of P−1
22 is different from ours

because of the focus on the timeless perspective. Because this does not allow for unbounded initial values

of the Lagrange multiplier p0 (see proof), they show instead that that it could lead to random policies that

perform better than the deterministic ones.
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associated with the non-predetermined variables (and is the source of the time inconsis-

tency problem), and P =

[

P11 P12

P21 P22

]

is written conformably with predetermined and

non-predetermined variables respectively. Clearly if P−1
22 is not non-negative definite, then

the value of V0 can be set arbitrarily large by appropriate choice of p0; in such a case, a

solution to the problem which tends to a steady state optimum does not exist.

As mentioned above we assume the existence of a steady state solution to (4) given by

[X̄, W̄ , λ̄], since we are interested in approximations about the latter. Hence the matrices

in (6) (apart from Pt) are constant. Thus this theorem provides a means of checking

whether a candidate solution to (4) actually is optimal. Note that the perturbed system

is in standard linear-quadratic format, which is the basis for this result.

We also note that Magill (1977)’s result easily extends to the stochastic case as well.

Thus if the dynamic equations are written as Xt = f(Xt−1,Wt, εt), where the εt have

mean zero and are independently normally distributed then any perturbations about the

deterministic solution are solutions to the problem

max E0

∞
∑

t=0

βt
[

xt−1 wt εt

]









HXX HXW HXε

HWX HWW HXε

HεX HεW Hεε

















xt−1

wt

εt









s.t. xt = fXxt−1 + fW wt + fεεt (8)

2.2 A Simple Example

We now present an application of this theorem to a simple stylized problem, which also

summarizes the erroneous approach to LQ approximation. In addition, we outline how

the method of Benigno and Woodford (2003, 2005) would be implemented to find the LQ

approximation. The two methods are equivalent, but the Hamiltonian approach is both

more general and more straightforward to implement.

Consider the following optimization problem for a monetary authority to choose a

state-contingent path for its inflation target πt so as to minimize an ad hoc objective

function

E0

[

∞
∑

t=0

λt
[

(xt − x∗)2 + π2
t

]

]

(9)

where xt is the output gap in logarithms given by a non-linear ‘New Keynesian’ Phillips

curve

πt = βEtπt+1 + f(xt) + st ; f ′ > 0, f ′′ < 0 (10)
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where st is an i.i.d. supply shock. Let xn be the natural rate of output defined by

f(xn) = 0. Then in (9) x∗ ≥ xn is the logarithm of the efficient level of output where

inefficiency arises from monopolistic competition in the output market.

A common procedure for reducing this to a LQ problem is to expand about the steady

state xn so that f(xt) ≃ f(xn)+f ′(xn)(xt−xn)+ 1
2f ′′(x)(xt−xn)2=a(xt−xn)−b(xt−xn)2.

Much of the literature6 including Clarida et al. (1999) then erroneously adopts a linearized

Phillips curve

πt = βEtπt+1 + a(xt − xn) + st (11)

and proceeds with the LQ problem of minimizing (9) subject to (11). The error arises

from the objective function including a linear term in xtx
∗. From (10), xt = f−1(πt −

βEtπt+1 − ut) so unless x∗ is small, there is a second-order term missing in the objective

function if one proceeds with the linear approximation (11).

To get round this problem, the procedure set out in BW considers the deterministic

problem with commitment, so that there is no need to distinguish between Etπt+1 and

πt+1. Then one selects a new steady state (π̄, x̄) satisfying (10), and a multiplier h and

weights θ, φ such that

∞
∑

t=0

λt[θ(xt−x̄)2+φ(πt−π̄)2] ≡

∞
∑

t=0

λt[(xt−x∗)2+π2
t +h[β(πt+1−π̄)−(πt−π̄)+f(xt)−f(x̄)]]

(12)

up to a second order approximation in deviations about the steady state, give or take

constant terms. Then the problem becomes that of minimizing (12) subject to

πt − π̄ = βEt(πt+1 − π̄) − f(xt) + f(x̄) + ut
∼= βEt(πt+1 − π̄) + a(xt − x̄) + ut (13)

The BW procedure then amounts to finding the values π̄, x̄, θ, φ and h which are consistent

with the equalities in (12) and (13). For this simple example it is obvious that φ = 1.

Using the Hamiltonian approach it is more straightforward to show that π̄, x̄, h and θ

are given by

2(x̄−x∗)−hf ′(x̄) = 0 2π̄+h

(

1 −
β

λ

)

= 0 (1−β)π̄−f(x̄) = 0 θ = 1+hb (14)

Details are provided in Appendix A. By either method we can now see exactly what is

wrong with minimizing (9) subject to (11). Suppose that the policymaker adopts the

same discount factor as the private sector, then λ = β and π̄ = 0; that is the steady state

is the same deterministic non-inflationary steady state x, where f(x) = 0, we chose for

(11). Then comparing the BW procedure with the standard LQ approximation discussed

6Some previous work of one of the authors joins a distinguished list (see Currie and Levine (1993)).
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at the beginning of this section, we see that the latter is only a good approximation if

(x∗ − x̄) or b are small. In the former case this implies that the output target is close to

the non-inflationary stated state of xt, whilst in the latter case the Phillips curve is nearly

linear. If neither of these conditions apply then the BW or Hamiltonian procedures must

be used.

3 The Social Planner’s and Ramsey Problems

In this section we introduce the class of DSGE models to be studied. We assume a set of

consumers, each with given endowments, whose objective is to maximize an intertemporal

utility function. Typically this will incorporate consumption and leisure, but we shall

state the objectives in a general fashion, so that they can incorporate habit as well. Thus

the objective is for individual i to maximize an expected utility function of the form

E0

∞
∑

t=0

βtu(Wt−1,Wit) (15)

where the vector Wit represents individual i’s choices e.g. consumption and labour supply.

This utility function may also incorporate habit or catching-up, and may therefore also

be dependent on aggregate or average choices made in the previous period Wt−1.

We also assume that any resource constraints sum to a set of aggregate resource con-

straints. One can then define the social planner’s problem in terms of the representative

individual as that of

max E0

∞
∑

t=0

βtU(Xt−1,Wt) s.t. Xt = f(Xt−1,Wt, εt) (16)

where the set of constraints in this problem represent the set of (possibly intertemporal)

resource constraints and exogenous processes describing the environment. These might

include a dynamic equation for capital accumulation, and also capital utilization as in

Smets and Wouters (2003).7

3.1 Characterization of the Efficient Level

Ultimately we are going to approximate the non-linear stochastic optimization problem

in the vicinity of a suitably chosen deterministic steady state. We therefore focus on the

7Although there appear to be significant differences in the functions u of (15) and U of (16), these

are merely cosmetic. If we incorporate Wt as a subset of the state Xt, i.e. Xt = [XT
1t XT

2t], where X1t

represents the resource constraints, and X2t = Wt, then the presence of Xt−1 in U is merely a generalization

of including Wt−1 in U .
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deterministic optimization problem. Defining the Lagrangian

∞
∑

t=0

βt[U(Xt−1,Wt) − λT
t (Xt − f(Xt−1,Wt))] (17)

the following first order conditions provide the necessary conditions for the solution:

UW (Xt−1,Wt)+λT
t fW (Xt−1,Wt) = 0 UX(Xt−1,Wt)+λT

t fX(Xt−1,Wt+1)−
1

β
λT

t−1 = 0

(18)

The steady state of the deterministic social planner’s problem, the efficient level (denoted

by ∗), is then given by

X∗ = f(X∗,W ∗) UW (X∗,W ∗) + λ∗T fW (X∗,W ∗) = 0

UX(X∗,W ∗) + λ∗T fX(X∗,W ∗) − 1
β
λ∗T = 0 (19)

3.2 The Flexible-Price Solution and the Ramsey Problem

The difference between the efficient solution and that of the competitive or flexible-price

solution is due to the externalities of habit and of firm and labour market power. As we

shall see below for a particular example, the externality due to consumption habit works in

the opposite direction to the externalities that produce the mark-ups in prices and wages.

In principle it is possible to set a proportional tax (or subsidy) in the flexible-price case

that yields a ‘natural’ level of output exactly equal to the efficient level of output of the

social planner.

Thus typically in economic models of this type we would assume monopolistic com-

petition by firms. This leads to mark-up pricing, and creates a wedge between the level

of output under competition - the natural rate - and the level of output that could be

achieved by a social planner - the efficient level. This wedge may be exacerbated if we as-

sume that there is labour market power as well. The latter is not incorporated by Benigno

and Woodford (2005), but is common in most other New Keynesian models e.g. Clarida

et al. (2002). We also assume that costs for firms are continuous, which rules out state-

dependent S − s policies; we do this because such policies cannot be easily aggregated.

Initially we ignore the stochastic problem because the deterministic problem is sufficient

to set up the LQ approximation.

Thus far we have only discussed the efficient and flexible-price levels of output. A more

general model takes into account the fact that neither wages nor prices are completely

flexible. As a consequence, we must discuss the case where a policymaker is required to

maximize average welfare, in this case by choosing the optimal path for inflation. This is

a particular case of the Ramsey problem.
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Without going into details for the moment, the Ramsey problem differs from the social

planner’s problem in that there is decentralized decision-making that has to be taken into

account by the Ramsey planner. One can incorporate this in a general way into the model

by expanding the state space to take account of the additional dynamic behaviour of the

system. From the point of view of the Ramsey policymaker, the problem must be rewritten

as one of maximizing
∞
∑

t=0

βtV (Xt−1, Zt−1,Wt) (20)

In the New Keynesian model that we study below, the only difference between the

functions U and V is that there is an effect of price dispersion, where the latter is one of

the components of the new set of variables Zt. Price dispersion affects the disutility of

labour. We assume that the decentralized decisions can somehow be aggregated, so that

the constraints that must be satisfied by the Ramsey policymaker constitute both the

resource constraints and the additional implementation constraints8 (typically associated

with price and wage-setting, but excluding the intertemporal wealth constraint):

Xt = f(Xt−1,Wt) Zt = g(Zt−1,Xt−1,Wt; τ) (21)

It is important to appreciate that the implementation constraints associated with Zt rep-

resent individuals’ and firms’ decisions, and may involve future expectations. We take

the approach that the Ramsey policymaker has a reputation for precommitment, so that

we can take expectations of the future as always being fulfilled, and therefore regard all

equations as backward looking. Suppose in addition that all factor prices are fixed so

that inflation is 0 i.e. the appropriate elements of the vector Z are set equal to 0; we

then obtain a solution to the ‘natural’ rate by solving for the steady state X̄ = f(X̄, W̄ ),

Z̄ = g(Z̄, X̄, W̄ ; τ). This is also known as the flexible price equilibrium. An important

consideration is that the natural rate will be dependent on the tax/subsidy rate τ .

3.3 LQ Approximation of the Ramsey Problem: Efficient Case

Woodford (2003) now points out a key result for LQ-approximation. If at all possible,

the aim of the Ramsey policymaker is to stabilize the economy about the efficient level of

output. Let us assume therefore that the proportional tax/subsidy is set at exactly the

level at which the flexible price equilibrium achieves the efficient level of output. This

implies that there exists a value τ∗ such that the efficient rate, coupled with zero inflation,

is a solution to Z∗ = g(X∗, Z∗,W ∗; τ∗).

8This terminology is now widely used e.g. Khan et al. (2003), Kim et al. (2006b).
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The main result of this section is dependent on the ability (a) to expand the utility

function about the steady steady state efficient solution without the presence of linear

terms and (b) to expand the constraints about the steady state efficient solution without

the presence of constant terms.

Theorem 4:

The stabilization problem for the Ramsey policymaker can be approximately expressed

as a quadratic expansion of the welfare function about the efficient level, provided that

the Taylor series of Ṽ = V (Xt−1, Zt−1,Wt)−U(Xt−1,Wt) about the efficient level has no

first-order terms.

Proof: We first deal with the utility function, using the notation for deviations from

steady state introduced earlier:

∞
∑

t=0

βtV (Xt−1, Zt−1,Wt) =

∞
∑

t=0

βt[U(Xt−1,Wt) + Ṽ (Xt−1, Zt−1,Wt)]

=
∞
∑

t=0

βt[U(Xt−1,Wt) − λ∗T (Xt − f(Xt−1,Wt)) + Ṽ (Xt−1, Zt−1,Wt)]

∼=

∞
∑

t=0

βt[U(X∗,W ∗) + UXxt−1 + UW wt − λ∗T (xt − fXxt−1 − fW wt)

+
1

2
(xT

t−1HXXxt−1 + 2xT
t−1HXW wt + wT

t HWW wt + Ṽ (Xt−1, Zt−1,Wt)]

=
∞
∑

t=0

βt[U(X∗,W ∗) + (UX −
1

β
λ∗T + λ∗T fX)xt−1 + (UW + λ∗T fW )wt

+
1

2
(xT

t−1HXXxt−1 + 2xT
t−1HXW wt + wT

t HWWwt + Ṽ (Xt−1, Zt−1,Wt)] (22)

where H = U(X,W ) + λ∗T f(X,W ), and its second derivatives are evaluated at(X∗,W ∗).

Hence, using (19), the linear terms in xt, wt vanish. Since by assumption there are no

first-order terms in the expansion of Ṽ at the efficient level, it follows that this expansion

has no first-order terms present.

Now consider the constraints. Firstly the resource constraint is in steady state at the

efficient level, so that an expansion about the latter will contain no constant term. Sec-

ondly, the constraint involving Z, by appropriate choice of τ = τ∗ is also in a zero-inflation

steady state at the efficient level, so that any approximation of its dynamics about the

efficient level will omit a constant term. This completes the proof.

The implication of this proof is that the welfare function cannot always be approximated

as a constant plus quadratic terms, centred on the efficient rate, once the resource con-

straints have been incorporated. There are two conditions that must be satisfied for this
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approximation to be valid. Firstly the condition on Ṽ above needs to be checked; sec-

ondly the implementation constraints must incorporate a tax/subsidy rate such that their

steady-state solution is characterized by zero inflation and the efficient level of output.

If the tax/subsidy rate is inconsistent with the above, then there is a distortion relative

to the efficient case, and it is then necessary to assess whether this is a large or a small

distortion.

3.4 The Small Distortion Case

Suppose that the tax/subsidy is insufficient to eliminate the inefficiency, but that the

latter is small. There are then two approaches to obtain an approximation to the LQ

approximation. The first is take deviations about the inefficient steady state. This will,

as we have seen above, produce an approximation to the welfare that contains a constant

term (the steady-state welfare in the efficient case), and a quadratic term. The error in

the approximation is then in the dynamic equation describing individual decisions. In this

case, the efficient level Z∗ is not consistent with the steady state because τ 6= τ∗, which

means that the linearized approximation of the dynamic equation in for Zt will contain a

term Z∗ − g(X∗, Z∗,W ∗; τ); if this is small, it may be ignored.

The alternative is to take deviations about the natural rate, as done by Woodford

(2003), Appendix E. Define the non-zero inflation natural rate as (X̄, Z̄, W̄ ), which will

be dependent on τ . The dynamic equations in deviation form then no longer contain a

constant, but the linear terms in the welfare approximation (22) are now of the form:

(UX(X̄, W̄ ) −
1

β
λ∗T + λ∗T fX(X̄, W̄ ))xt−1 + (UW (X̄, W̄ ) + λ∗T fW (X̄, W̄ ))wt

∼= (HX + (X̄ − X∗)T HXX + (W̄ − W ∗)T HWX)xt−1

+(HW + (X̄ − X∗)T HXW + (W̄ − W ∗)T HWW )wt

= ((X̄ − X∗)T HXX + (W̄ − W ∗)T HWX)xt−1

+((X̄ − X∗)T HXW + (W̄ − W ∗)T HWW )wt (23)

Thus the linear terms can be ignored provided that X̄ − X∗ and W̄ − W ∗ are small.

To summarize then, there are two ways of assessing whether ’small distortions’ are

indeed small, and which relate directly to the necessary conditions examined in Section

2. This is done either by (1) evaluating the effect on the constant in the aggregated

decentralized equations or (2) the effect on the first-order terms in the Hamiltonian. A

further method of assessing the limitations of the small distortion case is discussed in

the next section, by comparing the weights on the quadratic terms of the LQ welfare

approximation for the efficient and the non-efficient case. This provides an arguably more
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direct assessment of the error in the approximation; this is because it is less easy to assess

the impact of the errors described above.

4 LQ Approximation of Optimal Monetary Policy in a DSGE

Model

We now turn to the main model of the paper and to optimal monetary policy. We initially

investigate the large distortions approximation and towards the end of this section, we

study both the efficient and the small distortions case.

The standard New Keynesian model ascribes a fixed probability in each period of

changing prices (and wages). This leads to dynamic equations for the overall price index,

and in turn this leads in the Woodford (2003) case to different choices of labour supply

by individuals, and in the Clarida et al. (2002) case to each individual providing the same

quantity of labour. In the former, the policymaker takes the average of the utility function,

which for small variance of shocks is approximately the same as flexible-price level of the

utility function, but with an additional effect from the spread of prices. In the latter,

although labour supply is the same for each worker, it is dependent on the spread of

demand for each good; this in turn leads to the utility function differing from the flexible

price utility function by a term dependent on the spread of prices and wages.

The model is of a cashless economy with external habit in consumption. Consumers of

type i maximize the intemporal trade-off between consumption Cit - taking into account

a desire to consume at a level similar to that of last period’s average consumption Ct−1 -

and leisure. The latter is accounted for by penalising working time Nit.

Unlike Clarida et al. (2000) we do not incorporate a proportional tax (or subsidy)

into the model in order to ensure that the steady state, or natural rate, of output is at

the efficient level. Instead we use the methodology of Section 2 to obtain a quadratic

approximation to the welfare when the natural rate differs from the efficient rate. This

is an issue also addressed by Benigno and Woodford (2005) using the less direct methods

outlined in the example of Section 2.

We can summarize the model in a concise form as:

Household Utility:

Ω0 = E0

[

∞
∑

t=0

βt

[

(Cit − hCCt−1)
1−σ

1 − σ
− κ

N1+φ
it

1 + φ

]]

(24)

Household Behaviour:
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The first-order conditions for households are as follows:

1 = βEt

[

Dt,t+1

(

Cit+1 − hCCt

Cit − hCCt−1

)

−σ 1

Πt+1

]

(25)

Wit

Pt
=

κ

(1 − 1
η
)
Nφ

it(Cit − hCCt−1)
σ (26)

where Dt,t+1 is the stochastic discount factor on holdings of one-period bonds, and the

gross inflation rate Πt is given by

Πt ≡
Pt

Pt−1
(27)

All consumers can trade in a complete set of state contingent bonds, and therefore engage

in complete risk-sharing, so that (25) represents the Keynes-Ramsey intertemporal first-

order condition for consumption across all consumers, taking habit into account. Equation

(26) equates relative marginal utilities of consumption and leisure to the real wage. Wit, Pt

are measures of the nominal wage of the ith agent and of price respectively. (26) also

incorporates market power of individual consumers, who are all distinct from the point of

view of production skills and face a demand curve

Nit =

(

Wit

Wt

)

−η

Nt (28)

where Wt and Nt denote aggregates, Nt ≡
∑

i N
η−1

η

it . Aggregate output Yt is similarly

defined by aggregating over all labour inputs.

There is market-clearing in wages, and in this set-up all agents set the same wage and

work the same number of hours. Thus (26) holds when i is deleted, so for this setup there

is no need to aggregate Wt,Nt.

Firms:

Unlike workers, firms only reset prices in any given period with probability 1 − ξ. Thus

the optimal price P 0
t for any firm that sets its price at t must take into account any future

periods during which the price remains unchanged.9

The first-order condition for profit-maximization for the jth firm over the duration of

the optimal price not being reset takes into account the elasticity of substitution ζ between

goods, which provides firms with monopolistic power. It is given by

P 0
t Et[

∞
∑

k=0

ξkDt,t+kYt+k(j)] =
κ

(1 − 1/ζ)
Et[

∞
∑

k=0

ξkDt,t+kPt+kMCt+kYt+k(j)] (29)

9It is easy to show that if there is planned indexation to the overall price index as well i.e. the future

price at time t + k is given by P 0
t (Pt+k−1/Pt)

γ then all the results presented here are the same when Πt

is replaced by Πt/Π
γ
t−1.
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where marginal cost is given by the real product wage MCt = Wt

AtPt
and the stochastic

discount factor Dt,t+k is given by

Dt,t+k = βk

(

Ct+k − hCCt+k−1

Ct − hCCt−1

)

−σ Pt

Pt+k

(30)

The first-order condition (29) is cumbersome to manipulate. However it is possible

to express this price-setting rule in terms of difference equations that are far easier to

manipulate. To do this first note that

Yt+k(j) =

(

P 0
t

Pt+k

)−ζ

Yt+k (31)

and multiplying both sides of (29) by (
P 0

t

Pt
)ζ(Ct − hCCt−1)

−σ and in addition noting that

Pt+k/Pt = Πt+k...Πt+1, the firms’ staggered price setting can be succinctly described by

Qt = Λt/Ht (32)

where we have defined variables Qt, Ht and Λt by

Qt ≡ P 0
t /Pt (33)

Ht − ξβEt[Π
ζ−1
t+1 Ht+1] = Yt(Ct − hCCt−1)

−σ (34)

Λt − ξβEt[Π
ζ
t+1Λt+1] =

κ

(1 − 1/ζ)(1 − 1/η)At
YtN

φ
t (35)

Price index inflation given by

1 = ξΠζ−1
t + (1 − ξ)Q1−ζ

t (36)

The production function at the firm level is defined as

Yt(j) = AtNt(j) (37)

where At represents a common technology shock and Nt(j) is an aggregate of differentiated

labour chosen by firm j. Then aggregate output across firms, some of whom can re-

optimize prices at time t, is given by Yt = At

∑

j Nt(j) = AtNt.

4.1 Price Dispersion and the Costs of Inflation

Here we discuss the effects of inflation on the dispersion of prices due to firms’ behaviour

discussed above, and the implications for total employment. These dispersion effects will

lead to costs of inflation, as we shall see later.
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The impact of price dispersion arises from labour input being the same for each indi-

vidual, but dependent on demand for each good:

Nt =
∑

j

Nt(j) =
Yt

At

∑

j

Yt(j)

Yt
=

Yt

At

∑

j

(

Pt(j)

Pt

)

−ζ

(38)

Now define the effect of price dispersion on labour demand as Dt =
∑

j(
Pt(j)
Pt

)−ζ . Assuming

that the number of firms is large, we can use the law of large numbers to obtain the

following dynamic relationship:

Dt = ξΠζ
t Dt−1 + (1 − ξ)Q−ζ

t (39)

4.2 The Ramsey Problem

For simplicity, we ignore government spending, so that Yt = Ct. As a consequence of the

price diversion result above, the deterministic Ramsey problem for a policy maker (with

commitment) is characterized by choosing a trajectory for inflation to maximize

Ω0 =

∞
∑

t=0

βt

[

(Yt − Zt)
1−σ

1 − σ
−

κ

1 + φ

(

Yt

At

)1+φ

D1+φ
t

]

(40)

subject to the constraints (39) and

Zt = hCYt−1 1 = ξΠζ−1
t + (1 − ξ)Q1−ζ

t QtHt = Λt (41)

Ht − ξβ[Πζ−1
t+1 Ht+1] = Yt(Yt − Zt)

−σ (42)

Λt − ξβ[Πζ
t+1Λt+1] =

κ

(1 − 1/ζ)(1 − 1/η)

(

Yt

At

)1+φ

Dφ
t (43)

Note that the dynamics of the term Dφ
t contains only second-order terms, and therefore

satisfies Theorem 2. Then had we included an optimal subsidy rate, we would have been

able to expand the utility function about the efficient rate.

We can now write the Lagrangian for the policymaker’s optimal control problem as

follows:

L = Ω0 +

∞
∑

t=0

βt[λ1t(Zt+1 − hCYt) + λ2t(1 − ξΠζ−1
t − (1 − ξ)Q1−ζ

t )

+ λ3t(QtHt − Λt) + λ4t(Ht − ξβΠζ−1
t+1 Ht+1 − Yt(Yt − Zt)

−σ)

+ λ5t(Λt − ξβΠζ
t+1Λt+1 −

κ

α

(

Yt

At

)1+φ

Dφ
t )

+ λ6t(Dt − ξΠζ
t Dt−1 − (1 − ξ)Q−ζ

t )] (44)
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where we define α = (1 − 1/ζ)(1 − 1/η).

First-order conditions are given by:

(Yt − Zt)
−σ − κ

Y
φ
t

A
1+φ
t

D1+φ
t − λ1thC

−λ5t
κ(1+φ)

α

Y
φ
t

A
1+φ
t

Dφ
t − λ4t((Yt − Zt)

−σ − σYt(Yt − Zt)
−σ−1) = 0

−(Yt − Zt)
−σ +

1

β
λ1t−1 − λ4tσYt(Yt − Zt)

−σ−1 = 0

β(1 − ζ)ξλ2,t+1Π
ζ−2
t+1 − λ4tξβ(ζ − 1)Πζ−2

t+1 Ht+1 − λ5tξβζΠζ−1
t+1 Λt+1 − ξβζλ6,t+1Π

ζ−1
t+1 Dt = 0

−λ2t(1 − ξ)(1 − ζ)Q−ζ
t + λ3tHt + ζ(1 − ξ)λ6tQ

−ζ−1
t = 0

λ3tQt + λ4t − ξΠζ−1λ4,t−1 = 0

−λ3t + λ5t − ξΠζ
t λ5,t−1 = 0

−κ

(

Yt

At

)1+φ

Dφ
t + λ6t − ξβΠζ

t+1λ6,t+1 −
κφ

α

(

Yt

At

)1+φ

Dφ−1
t λ5t = 0

There are also boundary conditions: initial values of the backward-looking variables,

and λ40 = λ50 = 0, since Ht and Λt are forward-looking, plus a terminal condition.

A sufficient terminal condition is that the dynamic system described by the first-order

conditions and original constraints is saddle-path stable. In fact all that concerns us for

LQ approximation is the steady state and the requirement of saddle-path stability. By

standard control theory the latter is ensured if the discount factor β is sufficiently close

to unity. The zero-inflation10 equilibrium values are given by

Π = Q = 1 Λ = H =
Y 1−σ(1 − hC)−σ

1 − βξ
D = 1 (1 − hC)−σ =

κ

α

Y φ+σ

A1+φ
(45)

λ5 =
1 − βhC − α
σ(1−hCβ)

1−hC
+ φ

= −λ4 λ3 = (1 − ξ)λ5 λ2 =
Hλ5 + ζλ6

(1 − ζ)
(46)

λ6 =
Y 1−σ(1 − hC)−σ

1 − βξ

( ασ
1−hC

+ φ)(1 − hCβ)

σ(1−hCβ)
1−hC

+ φ
(47)

Now that we have the steady-state values of the Lagrange multipliers, we are in a position

to apply Theorem 1. We first linearize the relationships between the variables, and then

obtain the quadratic approximation of the Lagrangian.

10Later, in section 5, we consider the conditions for the Ramsey problem to have a zero-inflation steady

state.
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4.3 Linearization of Dynamics

We linearize about a zero-inflation steady state and later examine the second-order condi-

tions for this to be appropriate for our LQ approximation. Define ht, λt, qt, πt as deviations

of Ht,Λt, Qt,Πt from their steady state values. In addition define yt = (Yt − Y )/Y ≈

log Yt/Y , at = (At − A)/A and define zt = (Zt − Z)/Y .

Linearization of the constraints yields

Hqt = λt − ht ξπt = (1 − ξ)qt (48)

zt+1 = hCyt (49)

ht − βξ(ζ − 1)Hπt+1 − βξht+1 = Y 1−σ(1 − hC)−σ(yt −
σ

1 − hC
(yt − zt)) (50)

λt − βξζΛπt+1 − βξλt+1 =
κ(1 + φ)

α

Y 1+φ

A1+φ
(yt − at) (51)

Now subtract (50) from (51). Noting that Λ = H, and substituting from (48) yields a

Phillips curve relationship of the form:

πt = βπt+1 +
(1 − ξ)(1 − βξ)

ξ
(φyt +

σ

1 − hC
(yt − zt) − (1 + φ)at) (52)

Note that linearization of the dispersion term around zero inflation is irrelevant, since it

reduces to dt − ξdt−1 = 0.11 Also note that at can be a stochastic process turning the

optimization problem into one that is stochastic.

4.4 The Accurate LQ Approximation

At this point we apply the result of Section 2, in order to obtain a quadratic approximation

to the period t value of the Hamiltonian. Ignoring the steady state value of the latter, the

remaining terms are given by:

−
1

2
(Y − Z)−σ−1Y 2σ(yt − zt)

2 −
1

2
κφ

Y 1+φ

A1+φ
y2

t − λ5
κ

2α
φ(1 + φ)

Y 1+φ

A1+φ
y2

t

+κ(1 + φ)
Y 1+φ

A1+φ
ytat + λ5

κ

α
(1 + φ)2

Y 1+φ

A1+φ
ytat

−λ5σY 2(Y − Z)−σ−1(yt − zt)yt +
1

2
λ5σ(σ + 1)Y 3(Y − Z)−σ−2(yt − zt)

2

−
ξ

2
π2

t ((ζ − 1)(ζ − 2)λ2Π
ζ−3 + (ζ − 1)(ζ − 2)Πζ−3Hλ4 + ζλ5(ζ − 1)Πζ−2Λ

+λ6ζ(ζ − 1)Πζ−2D) − ξπtλtζλ5Π
ζ−1 − ξπtht(ζ − 1)λ4Π

ζ−2

+
1

2
q2
t (λ2(1 − ξ)(1 − ζ)ζQ−1−ζ + λ6(1 − ξ)(1 + ζ)ζQ−2−ζ) + qthtλ3 (53)

11As Kim et al. (2006a) show, this feature follows from the particular choice of variables with respect to

which we applied the Taylor series approximation. If we had chosen a different normalization and linearized

with respect to
√

log Dt/D instead, we would have a bifurcation problem.
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After eliminating ht, λt, qt using (48), and substituting the steady state values above, we

finally arrive at the correct quadratic approximation to the non-linear Ramsey problem as

the maximization of E0

[
∑

∞

t=0 βtUt

]

with respect to {πt}, subject to (52) where

Ut = −
κ

2α

Y 1+φ

A1+φ

[

σ

1 − hC
(yt − hCyt−1)

2 + φ(α + λ5(1 + φ))y2
t

−2(1 + φ)(α + λ5(1 + φ))ytat + 2λ5
σ

1 − hC
(yt − hCyt−1)yt

−λ5
σ(σ + 1)

(1 − hC)2
(yt − hCyt−1)

2 +
ξζ

(1 − ξ)(1 − βξ)
(α + (1 + φ)λ5)π

2
t

]

(54)

4.5 Summary of the General Procedure

We summarize the general Hamiltonian procedure by providing the following step-by-step

recipe the practitioner should follow12:

1. Set out the deterministic non-linear problem for the Ramsey Problem, to maximize

the representative agents utility subject to non-linear dynamic constraints.

2. Write down the Lagrangian for the problem.

3. Calculate the first order conditions. We do not require the initial conditions for an

optimum since we ultimately only need the steady-state of the Ramsey problem.

4. Calculate the steady state of the first-order conditions. The terminal condition

implied by this procedure is that the system converges to this steady state.

5. Calculate a second-order Taylor series approximation, about the steady state, of the

Hamiltonian associated with the Lagrangian in 2.

6. Calculate a first-order Taylor series approximation, about the steady state, of the

first-order conditions and the original constraints.

7. Use 4. to eliminate the steady-state Lagrangian multipliers in 5. By appropriate

elimination both the Hamiltonian and the constraints can be expressed in minimal

form. This then gives us the accurate LQ approximation of the original non-linear

optimization problem in the form of a minimal linear state-space representation of

the constraints and a quadratic form of the utility expressed in terms of the states.

12MATLAB software to implement this procedure is available on request from the authors.
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4.6 The Social Planner’s Problem

The Social Planner can be regarded as maximizing (24) viewing all agents as identical,

and so can set Cit = Ct,Nit = Nt, subject to the constraint Ct = Yt = AtNt. The social

planner chooses a trajectory for output which satisfies the first-order condition

[Ct − hCCt−1]
−σ − hCβ[Ct+1 − hCCt]

−σ = κ
Y φ

t

A1+φ
t

(55)

The efficient steady-state level of output Yt+1 = Yt = Yt−1 = Y ∗, say, is therefore given by

(Y ∗)φ+σ =
(1 − hCβ)A1+φ

κ(1 − hC)σ
(56)

We can now examine the inefficiency of the zero-inflation steady state. From (45) the

zero-inflation steady state output in the Ramsey problem is given by Y = Ȳ where

(Ȳ )φ+σ =

(

1 − 1
ζ

) (

1 − 1
η

)

A1+φ

κ(1 − hC)σ
(57)

It is easy to check that this is exactly the same steady-state level as that of the flexi-price

economy where firms set prices optimally at every period. Comparing (56) and (57) we

have the result first obtained by Choudhary and Levine (2006):

Result 1

The natural level of output, Ȳ , is below the efficient level, Y ∗, if and only if

α ≡

(

1 −
1

ζ

)(

1 −
1

η

)

< 1 − hCβ (58)

In the case where there is no habit persistence in consumption, hC = 0, then (58)

always holds. In this case market power in the output and labour markets captured by

the elasticities η, ζ respectively drive the natural rate of output below the efficient level.

If habit persistence in consumption is sufficiently high, then (58) does not hold and the

natural rate of output and employment are then too high compared with the efficient

outcome and people are working too much. Why is this? In the efficient case, there is an

incentive for the social planner to raise Ct relative to hCCt−1, but also a disincentive to raise

Ct because of its effect on welfare in the next period. For decentralized consumers, there is

no disincentive effect because each will ignore the effect of its current raised consumption

in the next period. The greater is hC the greater is the effect of the disincentive on the

social planner.
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Is there empirical support that (58) holds? Terms
(

1 − 1
ζ

)

and
(

1 − 1
η

)

are the inverses

of mark-ups over marginal costs in the output and labour markets respectively. A plausible

upper bound on these mark-ups is 20% so α =
(

1 − 1
ζ

)(

1 − 1
η

)

> 1
1.22 . A condition on hC

for (58) to hold is therefore hCβ < 0.306. Most empirical estimates of habit in a quarterly

model are in the range hC = [0.5, 0.9] which would see this condition not holding.13

4.7 The Efficient Case

For this particular example, we are able to illustrate Theorem 4 without needing directly to

invoke a tax/subsidy and add a further algebraic burden. Suppose instead that the effect

of habit is to directly offset the effect of the distortions due to η, ζ i.e. 1−α−βhC = 0, so

that the value of output in the Ramsey problem (assuming zero inflation) is equal to the

efficient level. We need to check that the sufficient condition on Ṽ of Theorem 4 holds in

this case. One can see by inspection, that to first order about the efficient level of output

and zero inflation, we have the following expansion:

∞
∑

t=0

βtṼt =
∞
∑

t=0

−βt κ

1 + φ

(

Yt

At

)1+φ

(D1+φ
t − 1) ∼=

∞
∑

t=0

−βtκ

(

Y

A

)1+φ

dt (59)

But to first order, it is easy to see that dt = ξdt−1, so starting at d0 = 0, it is clear that

to first order, the value of (59) is zero.

It is now of interest to verify that expansion to second order in this case yields the same

expansion as for the large distortions case. We first note that the second order expansion

of Dt is given by

dt = ξdt−1 +
1

2

ξζ

1 − ξ
π2

t (60)

from which it follows that in a second order expansion we can ignore d2
t . Furthermore,

using (59) and (60), it follows that to second order about the efficient solution, we have

∞
∑

t=0

βt

[

(Yt − Zt)
1−σ

1 − σ
−

κ

1 + φ

(

Yt

At

)1+φ

D1+φ
t

]

∼=

−
1

2

∞
∑

t=0

βt

[

σY ∗1−σ

(1 − hC)1+σ
(yt − zt)

2 + κφ

(

Y ∗

A

)1+φ

y2
t +

κξζ

(1 − βξ)(1 − ξ)

(

Y ∗

A

)1+φ

π2
t

]

(61)

We now need to compare this with the expansion in the large distortions case, given by

(54). Using (56) in (61), and using the fact that λ5 = 0 (because 1−α−βhC = 0) in (54)

for this case, it is easy to show that the quadratic expansions are identical.

13If we were to add a tax wedge T , then (58) becomes (1−T )
(

1 − 1
ζ

) (

1 − 1
η

)

< 1−hCβ which suggests

that the condition would hold for a tax wedge T > 0.5 as observed in the euro-area. See Levine et al.

(2006).
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4.8 The Small Distortion Case

The small distortion case assumes that the zero-inflation steady state about which we

have linearized is approximately efficient. From result 2 this implies that 1 − βhC − α

is small. We are now in a position to examine the nature of this ‘approximation to an

approximation’ by examining the correctly quadratified single-period utility (54). From

(46) we can see that this means that λ5 must be small. An examination of (54) reveals

that the small distortion case, which would omit all terms involving λ5, is valid only if

| λ5(1 + φ) |<< α or, using the definition of λ5, only if

(1 + φ)
| 1 − βhC − α |

σ(1−hCβ)
1−hC

+ φ
<< α (62)

Typical estimated parameter values are σ = 3 (with this value or higher being confirmed

within other contexts as well), φ = 1.3. With hC at the mid-point of the range of estimates

at hC = 0.7 this gives the left-hand-side of (62) as 0.22 and the right-hand side as 0.69.

Neglected terms are therefore of the order of one third of those retained.

5 Target Implementability and External Habit

Svensson (2003, 2005) suggests real-world monetary policy is best viewed in terms of a

“prescribed guide for monetary policy”. These would include “targeting rules” and “in-

strument rules”. The latter could consist of Taylor-type that prescribe the commitment

of the monetary authority to change the nominal interest rate in response to changes in

target macro-economic variables such as the output gap and past, current or expected fu-

ture inflation rates. However on both normative and positive grounds he strongly argues

for the former.14 A general targeting rules would specify the objectives to be achieved

by for example setting out target variables, their targets and a loss function to be mini-

mized. In the context of our quadratic approximations we can interpret these targets as

‘bliss points’, provided that the period t quadratic approximation achieves a maximum at

these. This leads to a particular form of targeting rule in the Svensson sense that we call

‘target-implementability’:

Definition: A period-t welfare function is target-implementable iff, in the vicinity

of the steady state of the first-order conditions for a maximum, it can be written as a

weighted sum of squares of linear terms, with all weights negative; that is a sum of the

squares of deviations of target variables from their bliss points.

14This paper does not engage with the targeting versus instrument rules debate (but see, for example,

McCallum and Nelson (2004)).
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From Theorem 2 and the fact that a symmetric positive definite matrix Q can be

written as Q = XΛX ′ where X is a matrix of eigenvectors and Λ is a diagonal matrix of

real positive eigenvalues we now have:

Result 2

A necessary and sufficient condition for the solution to the Ramsey problem to be target-

implementable is that, in the vicinity of the steady state of the first-order conditions for

a maximum, the quadratic approximation to the Lagrangian is negative semi-definite.

Now consider the target-implementability of the welfare function in our LQ approxi-

mation to the Ramsey problem. First consider the case without habit (hC = 0). After

some further effort (and subtracting an appropriate term in a2
t ), (54) then reduces to

−κY φ+1

2αA1+φ
(φ + σα + 1 − α)

[

(yt −
1 + φ

σ + φ
at)

2 +
ζξ

(1 − ξ)(1 − βξ)(σ + φ)
π2

t

]

(63)

This is clearly target-implementable with a stochastic output target 1+φ
σ+φ

at and inflation

target of zero (the steady state about which we have formed the LQ approximation).

Since from Theorem 3 and result 2, the condition for target-implementability is a sufficient

condition for the first-order conditions to define a local maximum, we can now also confirm

that the zero inflation steady state (that we found to satisfy these first-order conditions

for hC ≥ 0) is indeed appropriate. Our stochastic target is of course the flexi-price output

so that (63) turns out to be micro-founded loss function popularized by Woodford (2003)

that penalizes deviations of the output gap and inflation from zero.

Now consider the case hC > 0. As for hC = 0 we now need to demonstrate whether the

natural rate as calculated, with zero inflation, is actually the steady state for the Ramsey

problem. To check this, we need either to solve the corresponding Riccati equation or to

check the sufficient conditions of target-implementability. If the sufficient conditions of

the latter are not satisfied, then checking the steady state Riccati matrix will not yield

analytic results. This is because the equation governing it is highly nonlinear, and in

addition the matrix is of dimension 2, so analytic solutions will not in general be found.

We therefore focus on target-implementability, and determine what conditions on the

underlying parameters are required for (54) to be negative semi-definite. By inspecting

this approximation we can see that apart from completing the square for the disturbance

term at, it will be negative semi-definite provided that the terms in yt and (yt − zt) are

negative semi-definite. This is equivalent to the requirement that we can write these terms

as a weighted sum of y2
t and (yt − νzt)

2, for some ν.
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the relatively innocuous approximation β = 1, since most quarterly models would assume

a value of the order of 0.99. It turns out that even then, the conditions for target-

implementability are rather messy, so instead we focus on a set of empirically innocuous

sufficient conditions on the parameters.

Proposition

(i) When (58) does not hold so that the natural rate is above the efficient rate, suffi-

cient conditions for the Ramsey problem with habit in consumption to have a target-

implementable zero inflation steady state are that σ > 1 and φσ2 > φ + σ.

(ii) When (58) holds so that the natural rate is below the efficient rate, sufficient condi-

tions for the zero-inflation steady state to be target-implementable are that α(1 + σ) >

(1 − hC)(1 − φ) and φ3 > φ + σ.

Proof : See Appendix B.

We note that for either case (i) or (ii), the single-period welfare loss may be rewritten

−
κ

2α

Y 1+φ

A1+φ

[

a1(yt − hCyt−1 +
a2

a1
yt)

2 + (a3 −
a2

2

a1
)y2

t − 2(1 + φ)(α + λ5(1 + φ))ytat

+
ξζ

(1 − ξ)(1 − βξ)
(α + (1 + φ)λ5)π

2
t

]

a1 =
σ

1 − hC
− λ5

σ(σ + 1)

(1 − hC)2
a2 = λ5

σ

1 − hC
a3 = φ(α + λ5(1 + φ)) (64)

with a1 > 0, a3 −
a2
2

a1
> 0. Thus at each period there is a bliss-point for inflation of

0, a bliss-point for output of (1 + φ)(α + λ5(1 + φ))/(a3 −
a2
2

a1
)at, and a bliss-point for

output growth yt − yt−1 in terms of last period’s output given by −

(

1+
a2
a1

−hC

)

(

1+
a2
a1

) yt−1.
15 In

the special case hC = 0, there is no bliss-point for output growth, the coefficient on y2
t is

a1 + 2a2 + a3, so that the bliss-point for output is 1+φ
σ+φ

at as in (63).

Using typical estimated parameter values discussed above, both of the sufficient con-

ditions (i) and (ii) are easily satisfied. Necessary conditions are much more difficult to

derive, as there is a wide range of parameter values for which the sufficient conditions of

Theorem 3 are satisfied, even though the quadratic approximation is not negative definite.

The following set of theoretically possible parameters however, yields a situation where the

necessary first-order conditions yield a zero-inflation steady state, but there is no steady-

state for the Riccati matrix: σ < 0.6, φ = 0.03, hC = 0.75, ξ = 0.7 and ζ = 5, η = 16

(implying α = 0.75). Furthermore, the sufficient conditions of Theorem 3 are violated for

some values of t. Thus we have the following:

15Note that a2 ≥ 0 iff λ5 ≥ 0. λ5 = 0 for the efficient case; λ5 > 0 if hC is small and λ5 < 0 as hC → 1.
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Result 3: For the problem with habit, there are possible configurations of parameter

values such that the solution to the Ramsey problem does not have a zero inflation steady-

state equilibrium.

Although σ < 0.6 lies outside most, but not all estimates, this example is interesting

because it serves as an example of why second-order conditions, routinely by-passed in

the optimal dynamic policy literature, do matter. Benigno and Benigno (2006) discuss

a case where randomized policy may be superior in a non-inflationary steady state. The

conditions they derive for this correspond precisely to those which guarantee that the

steady-state solution to the corresponding Riccati equation is either negative definite, or

in which the negative definite solution is unstable. Only by implication do they suggest

that the zero-inflation optimal solution must therefore be completely invalid.

6 Nash Equilibria in a Two-Bloc Model

We now investigate a two bloc version of our previous model without habit in consumption

as in Clarida et al. (2002), and focus on the use of the subsidy approach which enables the

decentralized level of output to match the efficient level. For this case we abstract from

productivity shocks and schoose units so that the production functions are Y = N,Y ∗ =

N∗ for the home and foreign blocks respectively. Thus we can regard the level of output

in each bloc as the resource.

The two blocs are of different sizes, in the ratio (1 − γ) : γ. Consumption preferences

are Cobb-Douglas, and once we take the risk-sharing relationship into account, this results

in terms-of-trade being equal to relative output.

6.1 Non-cooperative Social Planners’ Problem

As for the single policymaker case we only need to consider the deterministic optimization

problem. From the viewpoint of the social planner in each country, each has to solve the

following problems:

The home planner maximizes

C1−σ

1 − σ
−

Y 1+φ

1 + φ
s.t. C = kY 1−γY ∗γ (65)

while the foreign planner maximizes

C∗1−σ

1 − σ
−

Y ∗1+φ

1 + φ
s.t. C∗ = kY 1−γY ∗γ (66)
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where k = γγ(1 − γ)1−γ . It is easy to show that the non-cooperative solution is

Ȳ σ+φ
NC = (1 − γ)k1−σ

(

γ

1 − γ

)

γ(1−σ)
1+φ

Ȳ ∗σ+φ
NC = γk1−σ

(

1 − γ

γ

)

(1−γ)(1−σ)
1+φ

(67)

By analogy with the single country case, we regard these levels of output as the efficient

levels under non-cooperation.

6.2 Choice of Subsidy to Match the Efficient Level

Consider now the decentralized equilibrium, with flexible prices and wages. The home

planner maximizes (65), and the foreign planner maximizes (66) with respect to the subsidy

rates τ, τ∗ subject to the competitive choice of wages and prices. By analogy with the single

country case we may write down the following first-order conditions for the latter:

W

P
= 1/(1 − 1/η)NφCσ W ∗

P ∗
= (1 − 1/η)N∗φC∗σ

1 − 1/ζ =
1 − τ

k

W

P
Sγ =

1 − τ∗

k

W ∗

P ∗
Sγ−1 (68)

where the terms of trade S = Y/Y ∗.

The home policymaker maximizes (65) subject to all the constraints. The effective

mathematics of this is that each policymaker chooses Y , Y ∗ in the same way as did the

social planner above, and then sets the tax rates to achieve this. This yields the Clarida

et al. (2002) result:

(1 − 1/η)(1 − 1/ζ) = (1 − τ)(1 − γ) = (1 − τ∗)γ (69)

6.3 LQ Approximation for the Small Distortions Case

Here we assume as before that there is inertia in the decision-making of firms, so that

there is a price dispersion effect on utility. As a consequence, we may write the utility

function for the home country as

∞
∑

t=0

βt

[

C1−σ
t

1 − σ
−

Y 1+φ
t

1 + φ
D1+φ

t

]

s.t. Ct = kY 1−γ
t Y ∗γ

t (70)

and for the foreign country as

∞
∑

t=0

βt

[

C∗1−σ
t

1 − σ
−

Y ∗1+φ
t

1 + φ
D∗1+φ

t

]

s.t. C∗

t = kY 1−γ
t Y ∗γ

t (71)
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The constraints associated with the home country’s price-setting are given by

1 = ξΠζ−1
t + (1 − ξ)Q1−ζ

t Ht − βξ[Πζ−1
t+1 Ht+1] = C−σ

t Yt

(

Y ∗

t

Yt

)γ

QtHt = Λt Λt − βξ[Πζ
t+1Λt+1] =

(1 − τ)Y 1+φ
t

kα
Dφ

t

Dt = ξΠζ
t Dt−1 + (1 − ξ)Q−ζ

t (72)

Note the difference between these equations and (32)-(35). The optimal price P 0
H is set

in the home currency, so that Q is defined as P 0
H/PH , but this means that there is a

multiplicative term PH/P to be accounted for. The latter depends on the terms of trade,

which explains the presence of the term (Y ∗/Y )γ . Note too, that Π refers to home producer

price inflation, not consumer price inflation. In a similar manner, the constraints associated

with the foreign country’s price-setting are given by

1 = ξΠ∗ζ−1
t + (1 − ξ)Q∗1−ζ

t H∗

t − βξ[Π∗ζ−1
t+1 H∗

t+1] = C∗−σ
t Y ∗

t

(

Yt

Y ∗

t

)1−γ

Q∗

t H
∗

t = Λ∗

t Λ∗

t − βξ[Π∗ζ
t+1Λ

∗

t+1] =
(1 − τ∗)Y ∗1+φ

t

kα
D∗φ

t

D∗

t = ξΠ∗ζ
t D∗

t−1 + (1 − ξ)Q∗−ζ
t (73)

Suppose now that the tax rates are set so as to achieve the social planners’ efficient levels

of output when inflation is equal to zero. We can now expand (omitting the second order

terms in inflation arising from price dispersion) the time-t utility for the home country as:

(kY 1−γ
t Y ∗γ

t )1−σ

1 − σ
−

Y 1+φ
t

1 + φ
∼=

(kȲ 1−γ
NC Ȳ ∗γ

NC)1−σ

1 − σ
−

Ȳ 1+φ
NC

1 + φ

+[(1 − γ)(kȲ 1−γ
NC Ȳ ∗γ

NC)1−σ − Ȳ 1+φ
NC ]yt + γ(kȲ 1−γ

NC Ȳ ∗γ
NC)1−σy∗t −

1

2
(kȲ 1−γ

NC Ȳ ∗γ
NC)1−σ

[

(1 − γ)[(γ + φ + (1 − γ)σ)y2
t ] + 2γ(1 − γ)(σ − 1)yty

∗

t + γ(1 − γ + γσ)y∗2t

]

(74)

=
(kȲ 1−γ

NC Ȳ ∗γ
NC)1−σ

1 − σ
−

Ȳ 1+φ
NC

1 + φ
+ γ(kȲ 1−γ

NC Ȳ ∗γ
NC)1−σy∗t −

1

2
(kȲ 1−γ

NC Ȳ ∗γ
NC)1−σ

[

(1 − γ)[(γ + φ + (1 − γ)σ)y2
t ] + 2γ(1 − γ)(σ − 1)yty

∗

t + γ(1 − γ + γσ)y∗2t

]

(75)

This result is striking; the use of the tax rate to shift the system to the efficient rate

eliminates the first-order term in yt, but does not eliminate the term in y∗t . The converse

is of course true for the foreign LQ approximation. This would be fine if we were searching

for a Nash equilibrium in output deviations. In this case for the home country, the terms in

y∗, y∗2 can be ignored, as they are under the control of the foreign policymaker. However,

if we are searching for a Nash equilibrium in inflation π, π∗, then the latter terms cannot
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be ignored; the utility function is maximized subject to the set of linearized constraints of

(72), so that the term in y∗ now matters for optimal policy for the home policymaker.

But this violates the requirement that that an appropriate LQ approximation is purely

quadratic in the utility function. We therefore have the following result:

Theorem 5

The small distortions LQ approximation is inappropriate as an approximation to the Nash

monetary policy equilibrium when inflation is taken as the instrument.

Whether inflation or the output gap is the proxy for interest rates is rarely made clear

in most of the theoretical analysis of monetary policy based on micro-foundations. Even

if we do go along with the output gap as the instrument, (74) still represents a deviation

from Clarida et al. (2002), who conclude that the welfare approximation for the home

country only involves home variables. It is clear from (74) that even if we can exclude the

y∗t , y∗2t terms from the home country’s decision-making process, there is still a term in

yty
∗

t to account for.

6.4 LQ Approximation for the Large Distortions Case

We now apply the Hamiltonian approach to obtain an LQ Approximation that is not

subject to the problems of the previous section. Before doing so, we need to carefully

choose the appropriate solution concept for the equilibrium of the noncooperative game.

Firstly there is the issue of which instrument to use16 ; here we have the choice of the

inflation rate or the output gap, each one acting as a proxy for the true instrument,

which is the interest rate. We choose the inflation rate, following Benigno and Benigno

(2006). Secondly, there is the choice of equilibrium concept given the instrument, which

we choose to be open-loop Nash. This means that the home country chooses its inflation

rate subject to the set of future inflation rates chosen by the foreign country. This is

ideally suited to obtaining an LQ approximation using the Hamiltonian approach, but it

is not the only Nash solution. The alternative is closed-loop Nash, for which the sequence

of foreign inflation rates is known to be dependent on the other system variables, such as

output, and this is taken into account by the home policymaker when setting its inflation

rate. However the latter concept has a solution that can only be obtained numerically

even in the LQ case and, as far as we are aware, has not been characterized for non-linear

problems. For reasons of tractability therefore, we therefore utilize the open-loop Nash

16This was not an issue for the single policymaker, but does arise in non-cooperative games, as the

well-known Bertrand versus Cournot Nash equilibria in the oligopoly game clearly illustrates.
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The problem for the home country then can be described as one of finding the station-

ary points of the Lagrangian

L =

∞
∑

t=0

βt

[

(kY 1−γ
t Y ∗γ

t )1−σ

1 − σ
−

Y 1+φ
t

1 + φ
D1+φ

t + λ1t(1 − ξΠζ−1
t − (1 − ξ)Q1−ζ

t )

+λ2t(QtHt − Λt) + λ3t(Ht − βξΠζ−1
t+1 Ht+1 − k−σ(Y 1−γ

t Y ∗γ
t )1−σ)

+λ4t(Λt − βξΠζ
t+1Λt+1 −

Y 1+φ
t

kα
Dφ

t ) + λ5t(Dt − ξΠζ
t Dt−1 − (1 − ξ)Q−ζ

t )

+λ∗

1t(1 − ξΠ∗ζ−1
t − (1 − ξ)Q∗1−ζ

t )

+λ∗

2t(Q
∗

t H
∗

t − Λ∗

t ) + λ∗

3t(H
∗

t − βξΠ∗ζ−1
t+1 H∗

t+1 − k−σ(Y 1−γ
t Y ∗γ

t )1−σ)

+λ∗

4t(Λ
∗

t − βξΠ∗ζ
t+1Λ

∗

t+1 −
Y ∗1+φ

t

kα
D∗φ

t ) + λ∗

5t(D
∗

t − ξΠ∗ζ
t D∗

t−1 − (1 − ξ)Q∗−ζ
t )

]

(76)

with respect to all variables other than Π∗

t . Thus we obtain:

∂L

∂Yt
=

(1 − γ)k−σ

Yt
(Y 1−γ

t Y ∗γ
t )1−σ[k − (λ3t + λ∗

3t)(1 − σ)] − Y φ
t Dφ

t

[

Dt + λ4t
1 + φ

kα

]

= 0

∂L

∂Y ∗

t

=
γk−σ

Y ∗

t

(Y 1−γ
t Y ∗γ

t )1−σ[k − (λ3t + λ∗

3t)(1 − σ)] − Y φ
t D∗φ

t

[

D∗

t + λ∗

4t

1 + φ

kα

]

= 0

∂L

∂Dt
= −Y 1+φ

t Dφ
t − λ4t

φ

kα
Y 1+φ

t Dφ−1
t + λ5t − βξλ5,t+1Π

ζ
t+1 = 0

∂L

∂D∗

t

= −λ∗

4t

φ

kα
Y ∗1+φ

t D∗φ−1
t + λ∗

5t − βξλ∗

5,t+1Π
∗ζ
t+1

∂L

∂Qt
= −λ1t(1 − ξ)(1 − ζ)Q−ζ

t + λ2tHt + ζ(1 − ξ)λ5tQ
−ζ−1
t = 0

∂L

∂Q∗

t

= −λ∗

1t(1 − ξ)(1 − ζ)Q∗−ζ
t + λ∗

2tH
∗

t + ζ(1 − ξ)λ∗

5tQ
∗−ζ−1
t = 0

∂L

∂Ht
= λ2tQt + λ3t − ξλ3,t−1Π

ζ−1
t = 0

∂L

∂H∗

t

= λ∗

2tQ
∗

t + λ∗

3t − ξλ∗

3,t−1Π
∗ζ−1
t = 0

∂L

∂Λt
= −λ2t + λ4t − ξλ4,t−1Π

ζ
t = 0

∂L

∂Λ∗

t

= −λ∗

2t + λ∗

4t − ξλ∗

4,t−1Π
∗ζ
t = 0

∂L

∂Πt
= (1 − ζ)ξλ1tΠ

ζ−2
t − λ3tξ(ζ − 1)Πζ−2

t Ht − λ4tξζΠζ−1
t Λt − ξζλ5tΠ

ζ−1
t Dt−1 = 0

The steady state is given by

Π = Q = D = 1 = Π∗ = Q∗ = D∗ Λ = H =
Y 1+φ

kα(1 − βξ)
= Λ∗ = H∗

Y σ+φ = αk1−σ = Y ∗σ+φ
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(1 − γ − α)k = (λ3 + λ∗

3)(1 − σ)(1 − γ) − λ3(1 + φ) γk = (λ3 + λ∗

3)(1 − σ)γ − λ∗

3(1 + φ)

Y 1+φ(1 − λ3
φ

kα
) = (1 − βξ)λ5 −Y 1+φλ∗

3
φ
kα

= (1 − βξ)λ∗

5

−λ1(1 − ξ)(1 − ζ) + λ2H + λ5ζ(1 − ξ) = 0 −λ∗

1(1 − ξ)(1 − ζ) + λ∗

2H
∗ + λ∗

5ζ(1 − ξ) = 0

λ4 = −λ3 λ∗

4 = −λ∗

3 λ2 = −λ3(1 − ξ) λ∗

2 = −λ∗

3(1 − ξ)

We can now expand (76) about its steady state in order to evaluate the second-order

approximation in the welfare, using the steady state values of the Lagrange multipliers

λ1, ..., λ∗

5. Defining yt = (Yt − Y )/Y, πt = Πt − 1, y∗t = (Y ∗

t − Y )/Y, π∗

t = Π∗

t − 1, we

first note that it is easy to show that ∂L/∂Π∗ = 0, so that the coefficient of π∗

t is zero.

After further manipulation we can show that the period-t welfare is given by:

ut = −
Y 1+φ

2

φ + 1 − α + ασ

σ + φ

[

(σ + φ)((1 − γ)yt + γy∗t )
2) + γ(1 − γ)(1 + φ)(yt − y∗t )

2)

+
ξζ

(1 − ξ)(1 − βξ)
((1 − γ)π2

t + γπ∗2
t )

]

(77)

For further details see Appendix C. The first term in this expression represents consump-

tion deviations and the second, terms of trade deviations. The presence of foreign country

inflation deviations arises from the fact that they are associated with foreign country price

dispersion. The latter enters the foreign price-setting decision, which in turn has an impact

on the home country’s consumption choice.

What is immediately noticeable in (77) is the symmetry with which the terms in output

and inflation deviations from each bloc enter the quadratic approximation to the utility

of the home bloc. It implies of course that it is identical to the approximation to the

utility of the foreign bloc. Furthermore, a similar calculation for the cooperative utility

function produces an identical approximation. Thus we are able to replicate the Benigno

and Benigno (2006) result in the absence of shocks, that for identical economies when the

system starts out of equilibrium, there are no gains from cooperation.

In the presence of shocks, the structure of the welfare approximation would be identical

to (77) apart from there now being output deviation targets that would depend on the

shocks. These are obtained via calculation of the second derivative terms ∂2L/∂Y ∂S,

where S represents a shock. As in Benigno and Benigno (2006), for some shocks the

output targets are different under cooperation and non-cooperation, so that there are

potential gains from cooperation even for identical economies.
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7 Concluding Remarks

Despite recent advances in numerical methods for non-linear optimization problems, the

‘curse of dimensionality’ (see Judd (1998), chapter 7) will ensure the usefulness of LQ

approximations to these problem, even for the case of a single policy-maker. For games

involving many policy-makers a LQ approximation to calculations of players is for some

equilibrium concepts, for example the closed-loop Nash equilibrium, probably essential.

This paper has attempted a ‘users’ guide’ to accurate LQ approximation for researchers

studying such problems. We have highlighted pitfalls already exposed in the literature

and added another one in emphasizing that second-order conditions, usually ignored in

the optimal policy literature, do matter.

The Hamiltonian method of Magill (1977), which we have shown is equivalent to the

Benigno-Woodford ‘large distortions’ procedure, provides an accurate LQ approximation

of the household’s utility function given a linearized model economy in the vicinity of the

Ramsey commitment problem for the policymaker. For the case of non-cooperative games,

the latter is the Ramsey problem for each policy-maker given the open-loop trajectory of

instruments of the other players. The question then is, given the choice of welfare which

differs for cooperative and non-cooperative games, is this LQ approximation appropriate

for other types of policy (for example for optimized simple rules, time-consistent policy

or for other non-cooperative equilibrium concepts)? Because the Ramsey commitment

problem is, ex ante, the best the policymaker can achieve, as Woodford (2003), chapter 6,

has pointed out, this is indeed the case.17 Thus LQ approximation provides a tractable

framework for comparing both cooperative and non-cooperative rules with and without

commitment, and different forms of non-cooperative equilibria (closed-loop versus open-

loop, different choices of instruments) using the same LQ approximation of the problem

facing each policymaker. Future research involving the authors will pursue precisely this

agenda.

One final caveat is in order. Whereas the thrust of this paper has been to provide a

basis for comparing the fully optimal rule to any other rule, Benigno and Woodford (2006)

have focused on the timeless perspective, which requires a different initial condition for

the fully optimal policy. They have noted that in order to ensure that this achieves the

highest welfare compared to any other rule, a correction needs to be made to the latter.

This correction involves a second-order approximation to the evolution of the system under

the policy rule in question, and therefore goes beyond the scope of this paper.

17He writes that “... this calculation (of the quadratic approximation) need only be done once, and not

separately for each type of policy that one may wish to study”.
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A The Equivalence of the Benigno-Woodford and Hamilto-

nian Procedures

A.1 The Benigno-Woodford Procedure

To find (π̄, x̄) and h first write

(xt − x∗)2 + π2
t ≡ (xt − x̄ + x̄ − x∗)2 + (πt − π̄ + π̄)2

= (xt − x̄)2 + 2(xt − x̄)(x̄ − x∗) + (πt − π̄)2 + 2π̄(πt − π̄)

+ constant terms (A.1)

Then (12) holds iff at each time t

θ(xt − x̄)2 + φ(πt − π̄)2] ≡ (xt − x̄)2 + 2(xt − x̄)(x̄ − x∗) + (πt − π̄)2 + 2π̄(πt − π̄)

+ h

(

β

λ
(πt − π̄) − (πt − π̄) − a(xt − x̄) + b(xt − x̄)2

)

(A.2)

Equating quadratic and linear terms we arrive at

θ = 1 + hb (A.3)

φ = 1 (A.4)

2(x̄ − x∗) − ha = 0 (A.5)

2π̄ + h

(

β

λ
− 1

)

= 0 (A.6)

Then together with the condition for (π̄, x̄) to be a steady state:

(β − 1)π̄ − f(x̄) = 0 (A.7)

we have 5 equations to solve to θ, φ, h, π̄ and x̄. The solution is

h = −
2(x∗ − x̄)

a
< 0 if x∗ > x̄ (A.8)

π̄ =

(

1 −
β

λ

)

h

2
> 0 iff β > λ and x∗ > x̄ (A.9)

θ = 1 + hb < 1 if x∗ > x̄ (A.10)

where x̄ is the solution to

(β − 1)

(

1 −
β

λ

)

(x∗ − x̄)

a
+ f(x̄) = 0 (A.11)
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A.2 The Hamiltonian Procedure

We now show that the LQ procedure of BW is equivalent to a rather simpler one. Consider

the deterministic problem to choose at t = 0 a trajectory {πt} so as to minimize

[

∞
∑

t=0

λt
[

(xt − x∗)2 + π2
t

]

]

(A.12)

subject to

πt = βπt+1 + f(xt) (A.13)

To solve this problem we minimize a Lagrangian

L =

∞
∑

t=0

λt
[

(xt − x∗)2 + π2
t + µt(βπt+1 − πt + f(xt))

]

(A.14)

with respect to {πt}, {xt} and the Lagrangian multiplier {µt}. This is the deterministic

component of our original non-linear optimization problem available to the policymaker if

she can commit. The first-order conditions for this problem are

2(xt − x∗) + µtf
′(xt) = 0 (A.15)

2πt − µt +
β

λ
µt−1 = 0 (A.16)

πt − βπt+1 − f(xt) = 0 (A.17)

This system has a steady state (x, π, µ) at

2(x − x∗) + µf ′(x) = 0 (A.18)

2π − µ

(

1 −
β

λ

)

= 0 (A.19)

(1 − β)π − f(x) = 0 (A.20)

Comparing (A.18) to (A.20) with (A.7) to (A.9) and noting that a = f ′(x̄) in (A.5) it

is immediately apparent that (x, π, µ) = (x̄, π̄, h) found in the BW procedure. Then the

modified loss function (12) is a second-order Taylor series approximation to the Lagrangian

(A.14) evaluated at the steady state of the optimal commitment solution in the vicinity

of (x, π, µ).

B Proof of Proposition

(i) Firstly, we require the coefficient of π2
t inside the brackets of (54), α + (1 + φ)λ5,

to be positive. A little calculation shows that (with α > 1 − hC) this term is greater

than 1 − hC provided that σ > 1. Ignoring the shock term at, if we now consider the
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remaining terms as a quadratic function of yt and yt − zt, then this quadratic will always

be positive provided that (a) α + (1 + φ)λ5 > 0, (b) σ
1−hC

(1 − λ5(1+σ)
1−hC

) > 0 and (c)

φ(α + (1 + φ)λ5)
σ

1−hC
(1 − λ5(1+σ)

1−hC
) −

λ2
5σ2

(1−hC)2
> 0. (a) has already been shown, and since

by assumption α > 1 − hC it follows that λ5 < 0, so the left hand side of (b) is greater 0.

After some manipulation we can show that after multiplying (c) through by (1−hC)2 the

left hand side becomes

(φ3 − φ − σ)(1 − hC)2 + 2α(1 − hC)(σφ2 + φ + σ) + (φσ2 − φ − σ)α2

> (φ3 + σφ2)(1 − hC)2 + α(1 − hC)(σφ2 + φ + σ) + (φσ2 − φ − σ)α2 (B.21)

where the inequality holds when α > 1−hC . Thus the sufficient condition φσ2−φ−σ > 0

is likely to be considerably more stringent a condition than is required.

(ii) With α < 1 − hC , it is clear that λ5 > 0, so that (a) above is satisfied. After a

little manipulation, it is easy to show that σ
1−hC

(1 − λ5(1+σ)
1−hC

) = σ
(1−hC)2(σ+φ)

(α(1 + σ) −

(1 − hC)(1 − φ)), so that (b) is satisfied if α(1 + σ) > (1 − hC)(1 − φ). Finally, using the

condition α < 1 − hC ,

(φ3 − φ − σ)(1 − hC)2 + 2α(1 − hC)(σφ2 + φ + σ) + (φσ2 − φ − σ)α2

> (φ3 − σ − φ)(1 − hC)2 + α(1 − hC)(σφ2 + φ + σ) + (φσ2 + σφ2)α2 (B.22)

where the inequality holds when α < 1−hC . Once again the sufficient condition φ3−φ−σ >

0 is likely to be considerably more stringent a condition than is required.

C Derivation of Second-Order Welfare Approximation in

the Two-Bloc Case:

From now on, we drop all t-subscripts for purposes of conciseness. Firstly, we note that

∂L

∂Π∗
= −ξ(ζ − 1)Π∗ζ−1λ∗

1 − ξ(ζ − 1)Π∗ζ−2H∗λ∗

3 − ξζΠ∗ζ−1Λ∗λ∗

4 − ξζΠ∗ζ−1Dλ∗

5 (C.23)

which is easily shown to equal 0. Next, the coefficient of 1
2y2

t is given by

Y 2 ∂2L

∂Y 2
=

Y 1+φ

α

[

(1 −
λ3 + λ∗

3

k
(1 − σ))(1 − γ)((1 − σ)(1 − γ) − 1) − φα −

λ4

k
φ(1 + φ)

]

= −
Y 1+φ

α

φ + 1 − α + ασ

φ + σ
(1 − γ)(φ + σ − σγ + γ)

(C.24)

that of yty
∗

t is given by

Y Y ∗
∂2L

∂Y ∂Y ∗
=

Y 1+φ

α
(1 − γ)γ(1 − σ)(1 −

λ3 + λ∗

3

k
(1 − σ))

= −
Y 1+φ

α

φ + 1 − α + ασ

φ + σ
(1 − γ)γ(1 − σ)

(C.25)
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and that of 1
2y∗2t is given by

Y ∗2 ∂2L

∂Y 2
=

Y 1+φ

α

[

(1 −
λ3 + λ∗

3

k
(1 − σ))γ((1 − σ)γ) − 1) +

λ∗

3

k
φ(1 + φ)

]

= −
Y 1+φ

α

φ + 1 − α + ασ

φ + σ
γ(φ + γσ + 1 − γ)

(C.26)

Summing these yields the first two terms in (77), expressed as deviations in total output

and the terms of trade. The second-order terms in π2
t are derived from the sum of terms

in ∂2L
∂Π2 , 2 ∂2L

∂Π∂H
, 2 ∂2L

∂Π∂Λ , 2 ∂2L
∂Π∂H

, ∂2L
∂Q2 :

−
1

2
ξ(ζ − 1)π2

t [(ζ − 2)λ1 + (ζ − 2)λ3H + ζλ4H + ζλ5] − πthtξ(ζ − 1)λ3

−πtλtζλ4 + qthtλ2 +
1

2
q2
t (1 − ξ)ζ[(1 − ζ)λ1 − (ζ + 1)λ5]

(C.27)

where ht = Ht − H,λt = Λt − Λ, q = Qt − 1. Substituting ht + Hqt = λt, ξπt = (1 − ξ)qt

yields the required term of (77). The coefficient of 1
2π∗2

t is given by

∂2L

∂Π∗2
= −ξ(ζ − 1)[(ζ − 2)λ∗

1 + (ζ − 2)λ∗

3H + ζλ∗

4H + ζλ∗

5] (C.28)

Finally, it is easy to show that all partial second derivatives ∂2L/∂Πi∂Y i = 0 (where Πi =

Π,Π∗, Y i = Y, Y ∗), so that there are no cross-terms of the form πtyt in the approximation.
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